

SN32F260 Series

USER'S MANUAL

SN32F268/267/265/264/2641/263

SONiX 32-Bit Cortex-M0 Micro-Controller

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

AMENDENT HISTORY

Version Date		Description
1.0	2016/10/12	First version released.
1 1	2017/01/04	1. Modify the description of Deep Sleep Mode wakeup source.
1.1	2017/01/04	2. Add SN32F265J Package information.
1.2	2017/02/13	1. Add SN32F263X Package information.
1.3	2017/04/28	1. Modify typing error.
1.4	2017/12/26	1. Add Note for setting the pins which are not pin-out.
1.4		2. Modify typing error (CODE OPTION TABLE)
1.5	2018/09/19	1. Modify DP/DN naming rule.
1.5		2. Modify typing error of CT16Bn Register.
1.6	2019/03/19	1. Add Unique number descriptions.
1.0		2. Modify EM related typing errors.
1.7	2019/04/18	1. Modify Ch15. FLASH ROM PROGRAMMING PIN.
1.8	2019/12/09	1. Update 16 PACKAKE INFORMATION with new format.
1.9		1. Complement Chap 9 I2C.
	2020/01/03	2. Add notifications of BOOT pin in 1.4 PIN ASSIGNMENT.
		3. Add introduction of 2.6 UNIQUE NUMBER.

Table of Content

	AMENDEN	IT HISTORY	2
1	PRODU	CT OVERVIEW	
	1.1 FEA	TURES	
	1.2 SYS	TEM BLOCK DIAGRAM	
	1.3 CLC	OCK GENERATION BLOCK DIAGRAM	
	1.4 PIN	ASSIGNMENT	
	1.5 PIN	DESCRIPTIONS	
	1.6 PIN	CIRCUIT DIAGRAMS	
2	CENTRA	AL PROCESSOR UNIT (CPU)	
	2.1 ME	MORY MAP	
	2.2 SYS	TEM TICK TIMER	
	2.2.1	OPERATION	24
	2.2.2	SYSTICK USAGE HINTS AND TIPS	25
	2.2.3	SYSTICK REGISTERS	25
	2.2.3.1	System Tick Timer Control and Status register (SYSTICK_CTRL)	
	2.2.3.2	System Tick Timer Reload value register (SYSTICK_LOAD)	
	2.2.3.3	System Tick Timer Current Value register (SYSTICK_VAL)	
	2.2.3.4	System Tick Timer Calibration Value register (SYSTICK_CALIB)	
	2.3 NES	TED VECTORED INTERRUPT CONTROLLER (NVIC)	
	2.3.1	INTERRUPT AND EXCEPTION VECTORS	27
	2.3.2	NVIC REGISTERS	
	2.3.2.1	IRQ0~31 Interrupt Set-Enable Register (NVIC_ISER)	
	2.3.2.2	IRQ0~31 Interrupt Clear-Enable Register (NVIC_ICER)	
	2.3.2.3	IRQ0~31 Interrupt Set-Pending Register (NVIC_ISPR)	
	2.3.2.4	IRQ0~31 Interrupt Clear-Pending Register (NVIC_ICPR)	
	2.3.2.5	IRQ0~31 Interrupt Priority Register (NVIC_IPRn) (n=0~7)	
	2.4 APP	LICATION INTERRUPT AND RESET CONTROL (AIRC)	
	2.5 COI	DE OPTION TABLE	
	2.6 UNI	QUE NUMBER	
	2.7 COF	RE REGISTER OVERVIEW	
3	SYSTEM	I CONTROL	
	3.1 RES	ET	
	3.1.1	POWER-ON RESET (POR)	

	3.1.2	WATCHDOG RESET (WDT RESET)	34
	3.1.3	BROWN-OUT RESET	34
	3.1.3.1	BROWN OUT DESCRIPTION	. 34
	3.1.3.2	THE SYSTEM OPERATING VOLTAGE DECSRIPTION	. 35
	3.1.3.3	BROWN-OUT RESET IMPROVEMENT	. 35
	3.1.4	EXTERNAL RESET	36
	3.1.4.1	SIMPLY RC RESET CIRCUIT	. 37
	3.1.4.2	DIODE & RC RESET CIRCUIT	. 37
	3.1.4.3	ZENER DIODE RESET CIRCUIT	. 38
	3.1.4.4	VOLTAGE BIAS RESET CIRCUIT	. 38
	3.1.4.5	EXTERNAL RESET IC	. 39
	3.1.5	SOFTWARE RESET	39
	3.2 SYS	STEM CLOCK	. 40
	3.2.1	INTERNAL RC CLOCK SOURCE	40
	3.2.1.1	Internal High-speed RC Oscillator (IHRC)	. 40
	3.2.1.2	Internal Low-speed RC Oscillator (ILRC)	. 40
	3.2.2	SYSTEM CLOCK (SYSCLK) SELECTION	41
	3.2.3	CLOCK-OUT CAPABITITY	41
	3.3 SYS	STEM CONTROL REGISTERS 0	. 42
	3.3.1	Analog Block Control register (SYS0_ANBCTRL)	42
	3.3.2	Clock Source Status register (SYS0_CSST)	42
	3.3.3	System Clock Configuration register (SYS0_CLKCFG)	42
	3.3.4	AHB Clock Prescale register (SYS0_AHBCP)	43
	3.3.5	System Reset Status register (SYS0_RSTST)	43
	3.3.6	LVD Control register (SYS0_LVDCTRL)	44
	3.3.7	External RESET Pin Control register (SYS0_EXRSTCTRL)	44
	3.3.8	SWD Pin Control register (SYS0_SWDCTRL)	44
	3.3.9	Interrupt Vector Table Mapping register (SYS0_IVTM)	45
	3.3.10	Noise Detect Control register (SYS0_NDTCTRL)	45
	3.3.11	Noise Detect Status register (SYS0_NDTSTS)	45
	3.3.12	Anti-EFT Ability Control register (SYS0_ANTIEFT)	45
	3.4 SYS	TEM CONTROL REGISTERS 1	. 47
	3.4.1	AHB Clock Enable register (SYS1_AHBCLKEN)	47
	3.4.2	APB Clock Prescale register 1 (SYS1_APBCP1)	48
4	SYSTEM	I OPERATION MODE	. 49
	4.1 OVI	ERVIEW	. 49
	4.2 NOI	RMAL MODE	. 49
	4.3 LOV	W-POWER MODES	. 49

	4.3.1	SLEEP MODE	. 49
	4.3.2	DEEP-SLEEP MODE	. 50
	4.4 WA	KEUP	. 50
	4.4.1	OVERVIEW	. 50
	4.4.2	WAKEUP TIME	. 50
	4.5 STA	ATE MACHINE OF PMU	. 51
	4.6 OPE	ERATION MODE COMPARSION TABLE	. 52
	4.7 PM	U REGISTERS	. 53
	4.7.1	Power Control register (PMU_CTRL)	. 53
5	GENER	AL PURPOSE I/O PORT (GPIO)	. 54
	5.1 OV	ERVIEW	. 54
	5.2 GPI	O MODE	. 54
	5.3 GPI	O REGISTERS	. 55
	5.3.1	GPIO Port n Data register (GPIOn_DATA) (n=0,1,2,3)	. 55
	5.3.2	GPIO Port n Mode register (GPIOn_MODE) (n=0,1,2,3)	. 55
	5.3.3	GPIO Port n Configuration register (GPIOn_CFG) (n=0,1,2,3)	. 55
	5.3.4	GPIO Port n Interrupt Sense register (GPIOn_IS) (n=0,1,2,3)	. 57
	5.3.5	GPIO Port n Interrupt Both-edge Sense register (GPIOn_IBS) (n=0,1,2,3)	. 57
	5.3.6	GPIO Port n Interrupt Event register (GPIOn_IEV) (n=0,1,2,3)	. 57
	5.3.7	GPIO Port n Interrupt Enable register (GPIOn_IE) (n=0,1,2,3)	. 58
	5.3.8	GPIO Port n Raw Interrupt Status register (GPIOn_RIS) (n=0,1,2,3)	. 58
	5.3.9	GPIO Port n Interrupt Clear register (GPIOn_IC) (n=0,1,2,3)	. 58
	5.3.10	GPIO Port n Bits Set Operation register (GPIOn_BSET) (n=0,1,2,3)	. 58
	5.3.11	GPIO Port n Bits Clear Operation register (GPIOn_BCLR) (n=0,1,2,3)	. 59
6	16-BIT 7	FIMER0 WITH CAPTURE FUNCTION	. 60
	6.1 OV	ERVIEW	. 60
	6.2 FEA	ATURES	. 60
	6.3 PIN	DESCRIPTION	. 60
	6.4 BLC	OCK DIAGRAM	. 61
	6.5 TIM	IER OPERATION	. 62
	6.5.1	Edge-aligned Up-counting Mode	. 62
	6.6 PW	М	. 63
	6.6.1	PWM Mode 1	. 63
	6.6.2	PWM Mode 2	. 64
	6.7 CT1	6BN REGISTERS	. 65
	6.7.1	CT16Bn Timer Control register (CT16Bn_TMRCTRL) (n=0,1)	. 65
	6.7.2	CT16Bn Timer Counter register (CT16Bn_TC) $(n=0,1)$. 65
	6.7.3	CT16Bn Prescale register (CT16Bn_PRE) (n=0,1)	. 65

6.7.4	CT16Bn Prescale Counter register (CT16Bn_PC) (n=0,1)	66
6.7.5	CT16Bn Count Control register (CT16Bn_CNTCTRL) (n=0)	
6.7.6	CT16Bn Match Control register (CT16Bn_MCTRL) (n=0)	67
6.7.7	CT16Bn Match Control register (CT16Bn_MCTRL) (n=1)	67
6.7.8	CT16Bn Match Control register 2(CT16Bn_MCTRL2) (n=1)	69
6.7.9	CT16Bn Match Control register 3 (CT16Bn_MCTRL3) (n=1)	
6.7.10	CT16Bn Match register 0 (CT16Bn_MR0) (n=0)	
6.7.11	CT16Bn Match register 0~23 (CT16Bn_MR0~23) (n=1)	
6.7.12	CT16Bn Capture Control register (CT16Bn_CAPCTRL) (n=0)	
6.7.13	CT16Bn Capture 0 register (CT16Bn_CAP0) (n=0)	
6.7.14	CT16Bn External Match register (CT16Bn_EM)(n=1)	
6.7.15	CT16Bn External Match Control register (CT16Bn_EMC)(n=1)	
6.7.16	CT16Bn External Match Control register 2(CT16Bn_EMC2)(n=1)	
6.7.17	CT16Bn PWM Control register (CT16Bn_PWMCTRL) (n=1)	
6.7.18	CT16Bn PWM Control register 2 (CT16Bn_PWMCTRL2) (n=1)	
6.7.19	CT16Bn PWM Enable register (CT16Bn_PWMENB) (n=1)	
6.7.20	PWM IO Enable register (CT16Bn_PWMI0ENB) (n=1)	
6.7.21	CT16Bn Timer Raw Interrupt Status register (CT16Bn_RIS) $(n=0, 1)$	
6.7.22	CT16Bn Timer Interrupt Clear register (CT16Bn_IC) (n=0,1)	
7 WATC	HDOG TIMER (WDT)	
7.1 OV	/ERVIEW	
7.2 BL	OCK DIAGRAM	
7.3 W	DT REGISTERS	
7.3.1	Watchdog Configuration register (WDT_CFG)	
7.3.2	Watchdog Timer Constant register (WDT_TC)	88
7.3.3	Watchdog Feed register (WDT_FEED)	89
8 SPI		
81 01	/FRVIFW	90
8.2 FE	ATURES	90
8.3 PI	N DESCRIPTION	
8.4 IN	TERFACE DESCRIPTION	
8.4.1	SPI	
8.4.2	COMMUNICATION FLOW	
8.4.2	1 SINGLE-FRAME	
8.4.2	2 MULTI-FRAME	
8.5 AU	JTO-SEL	
8.6 SP	I REGISTERS	
8.6.1	SPI n Control register 0 (SPIn_CTRL0) $(n=0)$	

8.6.2	SPI n Control register 1 (SPIn_CTRL1) (n=0)	
8.6.3	SPI n Clock Divider register (SPIn _CLKDIV) (n=0)	
8.6.4	SPI n Status register (SPIn _STAT) (n=0)	
8.6.5	SPI n Interrupt Enable register (SPIn _IE) (n=0)	
8.6.6	SPI n Raw Interrupt Status register (SPIn _RIS) (n=0)	
8.6.7	SPI n Interrupt Clear register (SPIn _IC) (n=0)	
8.6.8	SPI n Data register (SPIn _DATA) (n=0)	
8.6.9	SPI n Data Fetch register (SPIn _DF) (n=0)	
9 I2C		
9.1 O	VERVIEW	
9.2 FE	EATURES	
9.3 PI	N DESCRIPTION	
9.4 I2	C PROPOCOL	
9.4.1	7-BIT ADDRESSING MODES	
9.4.1	.1 MASTER TRANSMITTER MODE	
9.4.1	.2 MASTER RECEIVER MODE	
9.4.1	.3 SLAVE TRANSMITTER MODE	
9.4.1	.4 SLAVE RECEIVER MODE	
9.4.2	10-BIT ADDRESSING MODES	
9.4.2	.1 MASTER TRANSMITTER MODE	
9.4.2	.2 MASTER RECEIVER MODE	
9.5 AI	RBITRATION	101
9.6 CI	LOCK STRETCHING	101
9.7 GI	ENERAL CALL ADDRESS	101
9.8 TI	MING CHARACTERISTICS	
9.8.1	MASTER TRANSMITTER MODE	
9.8.2	SLAVE TRANSMITTER MODE	
9.9 I2	C REGISTERS	
9.9.1	I2C n Control register (I2Cn_CTRL) (n=0)	
9.9.2	$I2C n Status register (I2Cn_STAT) (n=0)$	
9.9.3	I2C n TX Data register (I2Cn_TXDATA) (n=0)	
9.9.4	I2C n RX Data register (I2Cn_RXDATA) (n=0)	
9.9.5	I2C n Slave Address 0 register (I2Cn_SLVADDR0) (n=0)	
9.9.6	I2C n Slave Address 1~3 register (I2Cn_SLVADDR1~3) (n=0)	
9.9.7	I2C n SCL High Time register (I2Cn_SCLHT) (n=0)	
9.9.8	$I2C n SCL Low Time register (I2Cn_SCLLT) (n=0)$	
9.9.9	I2C n Timeout Control register (I2Cn_TOCTRL) $(n=0)$	
10 USB	FS DEVICE INTERFACE	

10.1	OVERVIEW	107				
10.2	FEATURES	107				
10.3	PIN DESCRIPTION	107				
10.4	BLOCK DIAGRAM					
10.5	USB SRAM ACCESS					
10.6	USB MACHINE					
10.7	USB INTERRUPT					
10.8	USB ENUMERATION	110				
10.9	USB REGISTERS	111				
10.9	0.1 USB Interrupt Enable Register (USB_INTEN)	111				
10.9	0.2 USB Interrupt Event Status Register (USB_INSTS)	112				
10.9	0.3 USB Interrupt Event Status Clear Register (USB_INSTSC)	113				
10.9	0.4 USB Device Address Register (USB_ADDR)					
10.9	0.5 USB Configuration Register (USB_CFG)					
10.9	0.6 USB Signal Control Register (USB_SGCTL)					
10.9	0.7 USB Endpoint 0 Control Register (USB_EP0CTL)					
10.9	USB Endpoint n Control Register (USB_EPnCTL, $n = 1 \sim 4$)					
10.9	0.9 USB Endpoint Data Toggle Register (USB_EPTOGGLE)	117				
10.9	USB Endpoint n Buffer Offset Register (USB_EPnBUFOS, $n = 1 \sim 4$)	117				
10.9	0.11 USB Frame Number Register (USB_FRMNO)	117				
10.9	0.12 USB PHY Parameter Register (USB_PHYPRM)	117				
10.9	0.13 USB PHY Parameter Register 2(USB_PHYPRM2)	118				
10.9	0.14 USB PHY Parameter Register (USB_PS2CTL)	118				
10.9	0.15 USB Read/Write Address Register (USB_RWADDR)	118				
10.9	0.16 USB Read/Write Data Register (USB_RWDATA)	119				
10.9	0.17 USB Read/Write Status Register (USB_RWSTATUS)	119				
10.9	0.18 USB Read/Write Address Register2 (USB_RWADDR2)	119				
10.9	0.19 USB Read/Write Data Register2 (USB_RWDATA2)	119				
10.9	0.20 USB Read/Write Status Register 2(USB_RWSTATUS2)	120				
11 F	LASH					
11.1	OVERVIEW	121				
11.1	EMBEDDED FLASH MEMORY	121				
11.2	11.2 EWBEDDED FLASH WEWORT					
11.3	11.4 ORGANIZATION					
11.5	READ	122				
11.6	PROGRAM/ERASE					
11.7	EMBEDDED BOOT LOADER					
11.8	FLASH MEMORY CONTROLLER (FMC)					

11.8	8.1 CODE SECURITY (CS)	123
11.8	8.2 PROGRAM FLASH MEMORY	124
11.8	8.3 ERASE	
1	1.8.3.1 PAGE ERASE	
1	1.8.3.2 MASS ERASE	
11.9	READ PROTECTION	124
11.10	HW CHECKSUM	124
11.11	FMC REGISTERS	125
11.1	11.1 Flash Low Power Control register (FLASH_LPCTRL)	125
11.1	11.2 Flash Status register (FLASH_STATUS)	125
11.1	11.3 Flash Control register (FLASH_CTRL)	125
11.1	11.4 Flash Data register (FLASH_DATA)	126
11.1	11.5 Flash Address register (FLASH_ADDR)	126
11.1	11.6 Flash Checksum register (FLASH_CHKSUM)	126
12 S	SERIAL-WIRE DEBUG (SWD)	127
12.1	OVERVIEW	127
12.2	FEATURES	127
12.3	PIN DESCRIPTION	127
12.4	DEBUG NOTE	127
12.4	4.1 LIMITATIONS	127
12.4	4.2 DEBUG RECOVERY	127
12.4	4.3 INTERNAL PULL-UP/DOWN RESITIORS on SWD PINS	128
13 D	DEVELOPMENT TOOL	129
13.1	SN-LINK-V3.0	
13.2	SN32F268 STARTER-KIT	131
14 E	ELECTRICAL CHARACTERISTIC	
14.1	ABSOLUTE MAXIMUM RATING	132
14.2	ELECTRICAL CHARACTERISTIC	
15 F	LASH ROM PROGRAMMING PIN	
16 5		10.4
10 P	ACKAGE INFORMATION	134
16.1	LQFP 48 PIN	134
16.2	QFN 46 PIN	
16.3	SOP 28 PIN	
16.4	SSOP 28 PIN	137
16.5	QFN 28 PIN	
16.6	QFN 33 PIN	139

16.7	SSOP 24 PIN	140
17	MARKING DEFINITION	141
17.1	INTRODUCTION	141
17.2	MARKING INDETIFICATION SYSTEM	141
17.3	MARKING EXAMPLE	142
17.4	DATECODE SYSTEM	143

1 PRODUCT OVERVIEW

1.1 FEATURES

- Memory configuration Flash ROM size: 32KB(include Boot Loader 2K). User RAM: 2KB. USB FIFO RAM: 256 bytes.
- Operation Frequency up to 48MHz
- Interrupt sources ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).
- I/O pin configuration Bi-directional: P0, P1, P2, P3. Wakeup: P0, P1, P2, P3 level change. Pull-up resisters: P0, P1, P2, P3. 20mA Sink/8mA Drive: P0, P1, P2, P3.
- Programmable WatchDog Timer (WDT)
 Programmable watchdog frequency with watchdog clock source and divider.
- System tick timer

24-bit timer.

The system tick timer clock is fixed to the frequency of the system clock.

The SysTick timer is intended to generate a fixed 10-ms interrupt.

 LVD with separate thresholds Reset: 2.4V/3.3V for VDD.

• Full Speed USB 2.0

3.3v regulator output for D+ internal 1.5k pull-up resistor.

Supports one Full speed USB device address. Supports PS/2 mode.

One control EP and 4 configurable INT/BULK Endpoints.

EP0 supports 64-byte FIFO depth.

Programmable EP1~EP4 FIFO depth.

Total 5 endpoints share 256-byte USB RAM.

- Working voltage 2.5V ~ 5.5V
- ♦ Timer

One 16-bit general purpose timer CT16B0 with CAP0. One 16-bit general purpose timer CT16B1 with 23-ch PWM.

- Interfaces: I2C & SPI
 - One I2C controller supporting I2C-bus specification.
 - One SPI controller supporting SPI protocol.
- System clocks

Internal high clock: RC type 48MHz. Internal low clock: RC type 32KHz.

- Serial Wire Debug (SWD)
- Operating modes Normal, Sleep, and Deep-sleep.
- ◆ Fcpu (Instruction cycle) F_{CPU} = F_{HCLK} = F_{SYSCLK}/1, F_{SYSCLK}/2, F_{SYSCLK}/4, ..., F_{SYSCLK}/128.
- In-System-Progamming (ISP) supported
- 3.3V Regulator output

Driving current 60mA Power for USB D+ internal pull-up resistor. Can be IO power for P1.0~P1.5. (3.3V IOs) Can be power source for peripheral 3.3V devices.

Package (Chip form support)

LQFP48 pin QFN46 pin QFN33 pin QFN28 pin SOP28/SSOP28 pin SSOP24 pin

Features Selection Table

Chip	ROM	RAM	F _{CPU} (Max MHz)	TIMER	SPI	I2C	PWM	GPIO with Wakeup	Package
SN32F268F	32KB	2KB	48 MHz	16-bitx2	1	1	23-CH	42	LQFP48
SN32F267J	32KB	2KB	48 MHz	16-bitx2	1	1	23-CH	40	QFN46
SN32F265J	32KB	2KB	48 MHz	16-bitx2	1	1	18-CH	26	QFN33
SN32F2641J	32KB	2KB	48 MHz	16-bitx2	1	1	14-CH	22	QFN28
SN32F264S/X	32KB	2KB	48 MHz	16-bitx2	1	1	11-CH	22	SOP28/SSOP28
SN32F263X	32KB	2KB	48 MHz	16-bitx2	1	1	11-CH	18	SSOP24

1.2 SYSTEM BLOCK DIAGRAM

1.3 CLOCK GENERATION BLOCK DIAGRAM

1.4 PIN ASSIGNMENT

SN32F268F (LQFP 48 pins)

Note: SONiX provide Boot loader to check the status of P3.5 (BOOT pin) during boot procedure. If BOOT pin is Low during Boot procedure, MCU will execute code in Boot loader instead of User code. We strongly recommended NOT using BOOT pin as output pin to drive the LED, otherwise, the BOOT pin status may be low during boot procedure.

SN32F267J (QFN 46 pins)

Note: 1. The pins which are not pin-out shall be set correctly to decrease power consumption in lowpower modes. Strongly recommended to set these pins as input pull-up.

2. SONiX provide Boot loader to check the status of P3.5 (BOOT pin) during boot procedure. If BOOT pin is Low during Boot procedure, MCU will execute code in Boot loader instead of User code. We strongly recommended NOT using BOOT pin as output pin to drive the LED, otherwise, the BOOT pin status may be low during boot procedure.

SN32F265J (QFN 33pins)

Note: 1. The pins which are not pin-out shall be set correctly to decrease power consumption in lowpower modes. Strongly recommended to set these pins as input pull-up.

2. SONiX provide Boot loader to check the status of P3.5 (BOOT pin) during boot procedure. If BOOT pin is Low during Boot procedure, MCU will execute code in Boot loader instead of User code. We strongly recommended NOT using BOOT pin as output pin to drive the LED, otherwise, the BOOT pin status may be low during boot procedure.

SN32F2641J (QFN 28pins)

Note: 1. The pins which are not pin-out shall be set correctly to decrease power consumption in lowpower modes. Strongly recommended to set these pins as input pull-up.

2. SONiX provide Boot loader to check the status of P3.5 (BOOT pin) during boot procedure. If BOOT pin is Low during Boot procedure, MCU will execute code in Boot loader instead of User code. We strongly recommended NOT using BOOT pin as output pin to drive the LED, otherwise, the BOOT pin status may be low during boot procedure.

SN32F264S/X (SOP/SSOP 28pins)

- Note: 1. The pins which are not pin-out shall be set correctly to decrease power consumption in lowpower modes. Strongly recommended to set these pins as input pull-up.
 - 2. SONiX provide Boot loader to check the status of P3.5 (BOOT pin) during boot procedure. If BOOT pin is Low during Boot procedure, MCU will execute code in Boot loader instead of User code. We strongly recommended NOT using BOOT pin as output pin to drive the LED, otherwise, the BOOT pin status may be low during boot procedure.

SN32F263X (SSOP 24pins)

Note: The pins which are not pin-out shall be set correctly to decrease power consumption in lowpower modes. Strongly recommended to set these pins as input pull-up.

1.5 **PIN DESCRIPTIONS**

PIN NAME	TYPE	DESCRIPTION
VDD, VSS	Р	Power supply input pins for digital circuit.
VREG33	0	3.3v voltage output from USB 3.3v regulator.
	I/O	D+ — USB Differential signal line.
D+/PSCLK	I/O	PSCLK — PS/2 clock pin with internal 5K pull-up resistor.
	I/O	D- — USB Differential signal line.
D-/PSDATA	I/O	PSDATA — PS/2 data pin wit internal 5K pull-up resistor.
VDDIO1	Р	Power supply input pad for the IO power of P1.0~P1.5.
	I/O	P0.0 — General purpose digital input/output pin.
P0.0/CT16B1_PWM0/	0	CT16B1_PWM0 — PWM output 0 for CT16B1.
CLKOUT	0	CLKOUT — Clockout pin.
	I/O	P0.1 —General purpose digital input/output pin.
P0.1/CT16B1_PWM1/	0	CT16B1_PWM1 — PWM output 1 for CT16B1.
P0.1/CT16B1_PWM1/ PGDCLK	I/O	PGDCLK — Flash clock pin in programming mode.
	I/O	P0.2 —General purpose digital input/output pin.
P0.2/CT16B1_PWM2	0	CT16B1_PWM2 — PWM output 2 for CT16B1.
	I/O	P0.3 — General purpose digital input/output pin.
P0.3/CT16B1_PWM3	0	CT16B1_PWM3 — PWM output 3 for CT16B1.
P0.4/CT16B1_PWM4/	I/O	P0.4 — General purpose digital input/output pin.
	I/O	CT16B1_PWM4 — PWM output 4 for CT16B1.
SCL0	I/O	SCL0 — I2C clock input/output.
	I/O	P0.5 — General purpose digital input/output pin.
P0.5/C116B1_PVVM5/	I/O	CT16B1_PWM5 — PWM output 5 for CT16B1.
SDAU	I/O	SDA0 — I2C data input/output.
P0.6~P0.15/CT16B1_	I/O	P0.6~P0.15 — General purpose digital input/output pin.
PWM6~15	0	CT16B1_PWM6~15 — PWM output 6~15 for CT16B1.
P1.0	I/O	P1.0 — General purpose digital input/output pin.
	I/O	P1.1 — General purpose digital input/output pin.
P1.1/CT16B0_CAP0	I	CT16B0_CAP0 — Capture input 0 for CT16B0.
	I/O	P1.2 — General purpose digital input/output pin.
P1.2/SEL0	I	SEL0 — Slave Select for SPI.
	I/O	P1.3 — General purpose digital input/output pin.
P1.3/SCK0	I/O	SCK0 — Serial clock for SPI.
	I/O	P1.4 — General purpose digital input/output pin.
P1.4/MISO0	I/O	MISO0 — Master In Slave Out for SPI.

	I/O	P1.5 — General purpose digital input/output pin.
P1.5/MOSI0	I/O	MOSI0 — Master Out Slave In for SPI.
P2.0~P2.10	I/O	P2.0~P2.10 — General purpose digital input/output pin.
P3.0~P3.4/CT16B1_P	I/O	P3.0~P3.4 — General purpose digital input/output pin.
WM16~20	0	CT16B1_PWM16~20 — PWM output 16~20 for CT16B1.
	I/O	P3.5 — General purpose digital input/output pin.
P3.5/CT16B1_PWM2	0	CT16B1_PWM21 — PWM output 21 for CT16B1.
1/BOOT	I	BOOT — Internal pull-up in Boot loader, tie LOW to keep in Boot loader or left HIGH to exit Boot loader and execute User program at boot time.
	I/O	P3.6 — General purpose digital input/output pin.
P3.6/SWCLK	I	SWCLK — Serial Wire Clock pin.
	I/O	P3.7 — General purpose digital input/output pin.
P3.7/SWDIO	I/O	SWDIO — Serial Wire Data input/output pin.
	I/O	P3.8 — General purpose digital input/output pin.
P3.8/RESET/CT16B1	I	<u>RESET</u> — External Reset input. Schmitt trigger structure, active "Low", normally stay "High".
_1 \\1\22	0	CT16B1_PWM22 — PWM output 22 for CT16B1.

1.6 PIN CIRCUIT DIAGRAMS

• Normal Bi-direction I/O Pin.

Bi-direction I/O Pin Shared with Specific Digital Input Function, e.g. SPI, I2C...

*. Some specific functions switch I/O direction directly, not through GPIOn_MODE register.

• Bi-direction I/O Pin Shared with Specific Digital Output Function, e.g. SPI, I2C...

 $\label{eq:linear} \text{*. Some specific functions switch I/O direction directly, not through GPIOn_MODE register.}$

2 CENTRAL PROCESSOR UNIT (CPU)

2.1 MEMORY MAP

2.2 SYSTEM TICK TIMER

The SysTick timer is an integral part of the Cortex-M0. The SysTick timer is intended to generate a fixed 10-ms interrupt for use by an operating system or other system management software.

Since the SysTick timer is a part of the Cortex-M0, it facilitates porting of software by providing a standard timer that is available on Cortex-M0 based devices.

Refer to the Cortex-M0 User Guide for details.

2.2.1 OPERATION

The SysTick timer is a 24-bit timer that counts down to zero and generates an interrupt.

The intent is to provide a fixed 10-ms time interval between interrupts. The system tick timer is enabled through the SysTick control register. The system tick timer clock is fixed to the frequency of the system clock.

The block diagram of the SysTick timer:

When SysTick timer is enabled, the timer counts down from the current value (SYSTICK_VAL) to zero, reloads to the value in the SysTick Reload Value Register (SYSTICK_LOAD) on the next clock edge, then decrements on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set to 1. The COUNTFLAG bit clears on reads.

Note: When the processor is halted for debugging the counter does not decrease.

2.2.2 SYSTICK USAGE HINTS AND TIPS

The interrupt controller clock updates the SysTick counter. Some implementations stop this clock signal for low power mode. If this happens, the SysTick counter stops.

Ensure SW uses word accesses to access the SysTick registers.

The SysTick counter reload and current value are not initialized by HW. This means the correct initialization sequence for the SysTick counter is:

1. Program the reload value in SYSTICK_LOAD register.

- 2. Clear the current value by writing any value to SYSTICK_VAL register.
- 3. Program the Control and Status (SYSTICK_CTRL) register.

2.2.3 SYSTICK REGISTERS

2.2.3.1 System Tick Timer Control and Status register (SYSTICK_CTRL)

Address: 0xE000 E010 (Refer to Cortex-M0 Spec)

Bit	Name	Description	Attribute	Reset
31:17	Reserved		R	0
16	COUNTFLAG	This flag is set when the System Tick counter counts down to 0, and is cleared by reading this register.	R/W	0
15:3	Reserved		R	0
2	CLKSOURCE	Selects the SysTick timer clock source. 0: reference clock. 1: system clock. (Fixed)	R	1
1	TICKINT	 System Tick interrupt enable. 0: Disable the System Tick interrupt 1: Enable the System Tick interrupt, the interrupt is generated when the System Tick counter counts down to 0. 	R/W	0
0	ENABLE	System Tick counter enable. 0: Disable 1: Enable	R/W	0

2.2.3.2 System Tick Timer Reload value register (SYSTICK_LOAD)

Address: 0xE000 E014 (Refer to Cortex-M0 Spec)

The RELOAD register is set to the value that will be loaded into the SysTick timer whenever it counts down to zero. This register is set by software as part of timer initialization. The SYSTICK_CALIB register may be read and used as the value for RELOAD if the CPU or external clock is running at the frequency intended for use with the SYSTICK_CALIB value.

The following example illustrates selecting the SysTick timer reload value to obtain a 10 ms time interval with the system clock set to 48 MHz.

The SysTick clock = system clock = 48 MHz

RELOAD = (system tick clock frequency × 10 ms) -1 = (48 MHz × 10 ms) -1

= 0x000752FF.

Bit	Name	Description	Attribute	Reset
31:24	Reserved		R	0
23:0	RELOAD	Value to load into the SYSTICK_VAL when the counter is enabled and when it reaches 0.	R/W	0x5F7F9B

2.2.3.3 System Tick Timer Current Value register (SYSTICK_VAL)

Address: 0xE000 E018 (Refer to Cortex-M0 Spec)

Bit	Name	Description	Attribute	Reset
31:24	Reserved		R	0
23:0	CURRENT	Reading this register returns the current value of the System Tick counter. Writing any value clears the System Tick counter and the COUNTFLAG bit in SYSTICK_CTRL.	R/W	0x7E7F35

2.2.3.4 System Tick Timer Calibration Value register (SYSTICK_CALIB)

Address: 0xE000 E01C (Refer to Cortex-M0 Spec)

Bit	Name	Description	Attribute	Reset
31	NOREF	Indicates the reference clock to M0 is provided or not. 1: No reference clock provided.	R	1
30	SKEW	Indicates whether the TENMS value is exact, an inexact TENMS value can affect the suitability of SysTick as a software real time clock. 0: TENMS value is exact 1: TENMS value is inexact, or not given.	R	0
29:24	Reserved		R	0
23:0	TENMS	Reload value for 10ms timing, subject to system clock skew errors. If the value reads as zero, the calibration value is not known.	R/W	0xA71FF

2.3 **NESTED VECTORED INTERRUPT CONTROLLER (NVIC)**

All interrupts including the core exceptions are managed by the NVIC. NVIC has the following Features:

- > The NVIC supports 32 vectored interrupts.
- > 4 programmable interrupt priority levels with hardware priority level masking.
- Low-latency exception and interrupt handling.
- Efficient processing of late arriving interrupts.
- Implementation of System Control Registers
- Software interrupt generation.

2.3.1 INTERRUPT AND EXCEPTION VECTORS

Execution No.	Priority	Function	Description	Address Offset
0	-	-	Reserved	0x0000 0000
1	-3	Reset	Reset	0x0000 0004
2	-2	NMI_Handler	Non maskable interrupt.	0x0000 0008
3	-1	HardFault_Handler	All class of fault	0x0000 000C
4~10	Reserved	Reserved	Reserved	-
11	Settable	SVCCallI		0x0000 002C
12~13	Reserved	Reserved	Reserved	-
14	Settable	PendSV		0x0000 0038
15	Settable	SysTick		0x0000 003C
16	Settable	IRQ0/NDTIRQ	NDT	0x0000 0040
17	Settable	IRQ1/USBIRQ	USB	0x0000 0044
18	Settable	IRQ2/		0x0000 0048
19	Settable	IRQ3/		0x0000 004C
20	Settable	IRQ4/		0x0000 0050
21	Settable	IRQ5/		0x0000 0054
22	Settable	IRQ6/		0x0000 0058
23	Settable	IRQ7/		0x0000 005C
24	Settable	IRQ8/		0x0000 0060
25	Settable	IRQ9/		0x0000 0064
26	Settable	IRQ10/		0x0000 0068
27	Settable	IRQ11/		0x0000 006C
28	Settable	IRQ12/		0x0000 0070
29	Settable	IRQ13/SPI0IRQ	SPI0	0x0000 0074
30	Settable	IRQ14/		0x0000 0078

31	Settable	IRQ15/ I2C0IRQ	I2C0	0x0000 007C
32	Settable	IRQ16/CT16B0IRQ	CT16B0	0x0000 0080
33	Settable	IRQ17/CT16B1IRQ	CT16B1	0x0000 0084
34	Settable	IRQ18/		0x0000 0088
35	Settable	IRQ19/		0x0000 008C
36	Settable	IRQ20/		0x0000 0090
37	Settable	IRQ21/		0x0000 0094
38	Settable	IRQ22/		0x0000 0098
39	Settable	IRQ23/		0x0000 009C
40	Settable	IRQ24/		0x0000 00A0
41	Settable	IRQ25/WDTIRQ	WDT	0x0000 00A4
42	Settable	IRQ26/LVDIRQ	LVD	0x0000 00A8
43	Settable	IRQ27/		0x0000 00AC
44	Settable	IRQ28/P3IRQ	GPIO interrupt status of port 3	0x0000 00B0
45	Settable	IRQ29/P2IRQ	GPIO interrupt status of port 2	0x0000 00B4
46	Settable	IRQ30/P1IRQ	GPIO interrupt status of port 1	0x0000 00B8
47	Settable	IRQ31/P0IRQ	GPIO interrupt status of port 0	0x0000 00BC

2.3.2 NVIC REGISTERS

2.3.2.1 IRQ0~31 Interrupt Set-Enable Register (NVIC_ISER)

Address: 0xE000 E100 (Refer to Cortex-M0 Spec.)

The ISER enables interrupts, and shows the interrupts that are enabled.

Bit	Name	Description	Attribute	Reset
31:0	SETENA[31:0]	Interrupt set-enable bits. Write→ 0: No effect 1: Enable interrupt. Read→ 0: Interrupt disabled 1: Interrupt enabled.	R/W	0

2.3.2.2 IRQ0~31 Interrupt Clear-Enable Register (NVIC_ICER)

Address: 0xE000 E180 (Refer to Cortex-M0 Spec.)

The ICER disables interrupts, and shows the interrupts that are enabled.

Bit	Name	Description	Attribute	Reset
31:0	CLRENA[31:0]	Interrupt clear-enable bits. Write→ 0: No effect 1: Disable interrupt.	R/W	0

Read→ 0: Interrupt disabled 1: Interrupt enabled.

2.3.2.3 IRQ0~31 Interrupt Set-Pending Register (NVIC_ISPR)

Address: 0xE000 E200 (Refer to Cortex-M0 Spec.)

The ISPR forces interrupts into the pending state, and shows the interrupts that are pending.

- Note: Writing 1 to the ISPR bit corresponding to
 - 1. an interrupt that is pending has no effect
 - 2. a disabled interrupt sets the state of that interrupt to pending

Bit	Name	Description	Attribute	Reset
31:0	SETPEND[31:0]	Interrupt set-pending bits. Write→ 0: No effect 1: Change interrupt state to pending Read→ 0: Interrupt is not pending 1: Interrupt is pending	R/W	0

2.3.2.4 IRQ0~31 Interrupt Clear-Pending Register (NVIC_ICPR)

Address: 0xE000 E280 (Refer to Cortex-M0 Spec.)

The ICPR removes the pending state from interrupts, and shows the interrupts that are pending.

* Note: Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

Bit	Name	Description	Attribute	Reset
31:0	CLRPEND[31:0]	Interrupt clear-pending bits. Write→ 0: No effect 1: Removes pending state of an interrupt Read→ 0: Interrupt is not pending 1: Interrupt is pending	R/W	0

2.3.2.5 IRQ0~31 Interrupt Priority Register (NVIC_IPRn) (n=0~7)

Address: 0xE000 E400 + 0x4 * n (Refer to Cortex-M0 Spec.)

The interrupt priority registers provide an 8-bit priority field for each interrupt, and each register holds four priority fields. This means the number of registers is implementation-defined, and corresponds to the number of implemented interrupts.

Bit	Name	Description	Attribute	Reset
31:24	PRI_(4*n+3)	Each priority field holds a priority value, 0-192. The lower the value, the greater the priority of the corresponding interrupt. The processor implements only bits[31:30] of each field, bits [29:24] read as zero and ignore writes. This means writing 255 to a priority register saves value 192 to the register.	R/W	0
23:16	PRI_(4*n+2)	Each priority field holds a priority value, 0-192. The lower the value, the greater the priority of the corresponding interrupt. The processor implements only bits[23:22] of each field, bits [21:16] read as zero and ignore writes. This means writing 255 to a priority register saves value 192 to the register.	R/W	0

15:8	PRI_(4*n+1)	Each priority field holds a priority value, 0-192. The lower the value, the greater the priority of the corresponding interrupt. The processor implements only bits[15:14] of each field, bits [13:8] read as zero and ignore writes. This means writing 255 to a priority register saves value 192 to the register.	R/W	0
7:0	PRI_4*n	Each priority field holds a priority value, 0-192. The lower the value, the greater the priority of the corresponding interrupt. The processor implements only bits[7:6] of each field, bits [5:0] read as zero and ignore writes. This means writing 255 to a priority register saves value 192 to the register.	R/W	0

2.4 APPLICATION INTERRUPT AND RESET CONTROL (AIRC)

Address: 0xE000 ED0C (Refer to Cortex-M0 Spec)

The entire MCU, including the core, can be reset by SW by setting the SYSRESREQ bit in the AIRC register in Cortex-M0 spec.

Note: To write to this register, user must write 0x05FA to the VECTKEY field at the same time, otherwise the processor ignores the write.

Bit	Name	Description	Attribute	Reset
31:16	VECTKEY	Register key. Read as unknown. Write 0x05FA to VECTKEY, otherwise the write is ignored.	R/W	0
15	ENDIANESS	Data endianness implemented 0: Little-endian 1: Big-endian	R	0
14:3	Reserved		R	0
2	SYSRESETREQ	System reset request. This bit read as 0. 0: No effect 1: Requests a system level reset.	W	0
1	VECTCLRACTIVE	Reserved for debug use. This bit read as 0. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.	W	0
0	Reserved		R	0

2.5 CODE OPTION TABLE

Address: 0x1FFF 2000

Bit	Name	Description	Attribute	Reset
31:16	Code Security[15:0]	Code Security 0x0000: CS0 0x5A5A: CS1 0xA5A5: CS2 Other: CS2	R/W	0000
15:0	Reserved		R	All 0 Bit[1]=1

2.6 UNIQUE NUMBER

The unique number is a 8-byte unique device serial number of each IC. In other words, the unique number is different and discontinuous for each IC. Users can use the unique number to pair in RF application, or use as USB string serial number.

Address: 0x1FFF 2220

Bit	Name	Description	Attribute	Reset
31:0	L4BYTE[31:0]	Lower 4 bytes of Unique number	R	By Die

Address: 0x1FFF 2224

Bit	Name	Description	Attribute	Reset
31:0	H4BYTE[31:0]	High 4 bytes of Unique number	R	By Die

2.7 CORE REGISTER OVERVIEW

Register	Description (Refer to Cortex-M0 Spec)					
R0~R12	General-purpose registers for data operations.					
SP (R13)	The Stack Pointer (SP). In Thread mode, the CONTROL register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP) On reset, the processor loads the MSP with the value from address 0x00000000.					
LR (R14)	The Lir	Register	(LR). It store	res the return information for subroutines, function call	s, and exceptions.	
PC (R15)	The Program Counter (PC). It contains the current program address. On reset, the processor loads the PC with the value of the reset vector, at address 0x00000004.					
PSR	The Program Status Register (PSR) combines: • Application Program Status Register (APSR) • Interrupt Program Status Register (IPSR) • Execution Program Status Register (EPSR). These registers are mutually exclusive bit fields in the 32-bit PSR. PSR APSR N Z C V Reserved					
	IPSR	Reserved Exception number				
	EPSR	Rese	rved T	r Reserved		
PRIMASK	The PRIMASK register prevents activation of all exceptions with configurable priority.					
CONTROL	The CONTROL register controls the stack used when the processor is in Thread mode.					

3 SYSTEM CONTROL

3.1 RESET

A system reset is generated when one of the following events occurs:

- 1. A low level on the RST pin (external reset).
- 2. Power-on reset (POR reset)
- 3. LVD reset
- 4. Watchdog Timer reset (WDT reset)
- 5. Software reset (SW reset)

The reset source can be identified by checking the reset flags in <u>System Reset Status register (SYS0_RSTST</u>). These sources act on the RST pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at address 0x00000004 in the memory map. For more details, refer to <u>Interrupt and Exception Vectors</u>.

Finishing any reset sequence needs some time. The system provides complete procedures to make the power on reset successful. For different oscillator types, the reset time is different. That causes the VDD rise rate and start-up time of different oscillator is not fixed. RC type oscillator's start-up time is very short, but the crystal type is longer. Under client terminal application, users have to take care of the power on reset time for the master terminal requirement. The reset timing diagram is as following.

3.1.1 POWER-ON RESET (POR)

The power on reset depends on LVD operation for most power-up situations. The power supplying to system is a rising curve and needs some time to achieve the normal voltage. Power on reset sequence is as following:

- **Power-up:** System detects the power voltage up and waits for power stable.
- External reset (only external reset pin enable): System checks external reset pin status. If external reset pin is not high level, the system keeps reset status and waits external reset pin released.
- System initialization: All system registers is set as initial conditions and system is ready.
- Solution States and St
- Program executing: Power on sequence is finished and program executes from Boot loader.

3.1.2 WATCHDOG RESET (WDT RESET)

Watchdog reset is a system protection. In normal condition, system works well and clears watchdog timer by program. Under error condition, system is in unknown situation and watchdog can't be clear by program before watchdog timer overflow. Watchdog timer overflow occurs and the system is reset. After watchdog reset, the system restarts and returns normal mode. Watchdog reset sequence is as following.

- Watchdog timer status: System checks watchdog timer overflow status. If watchdog timer overflow occurs, the system is reset.
- **System initialization:** All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- **Program executing:** Power on sequence is finished and program executes from 0x0.

Watchdog timer application note is as following.

- Before clearing watchdog timer, check I/O status and check RAM contents can improve system error.
- Don't clear watchdog timer in interrupt vector and interrupt service routine. That can improve main routine fail.
- Clearing watchdog timer program is only at one part of the program. This way is the best structure to enhance the watchdog timer function.

***** Note: Please refer to the "WATCHDOG TIMER" about watchdog timer detail information.

3.1.3 BROWN-OUT RESET

3.1.3.1 BROWN OUT DESCRIPTION

The brown-out reset is a power dropping condition. The power drops from normal voltage to low voltage by external factors (e.g. EFT interference or external loading changed). The brown out reset would make the system not work well or executing program error.

Brown-Out Reset Diagram

The power dropping might through the voltage range that's the system dead-band. The dead-band means the power range can't offer the system minimum operation power requirement. The above diagram is a typical brown out reset diagram. There is a serious noise under the VDD, and VDD voltage drops very deep. There is a dotted line to separate the system working area. The above area is the system work well area. The below area is the system work error area called dead-band. V1 doesn't touch the below area and not affect the system operation. But the V2 and V3 is under the below area and may induce the system error occurrence. Let system under dead-band includes some conditions.

DC application:

The power source of DC application is usually using battery. When low battery condition and MCU drive any loading, the power drops and keeps in dead-band. Under the situation, the power won't drop deeper and not touch the system reset voltage. That makes the system under dead-band.

AC application:

In AC power application, the DC power is regulated from AC power source. This kind of power usually couples with AC noise that makes the DC power dirty. Or the external loading is very heavy, e.g. driving motor. The loading operating induces noise and overlaps with the DC power. VDD drops by the noise, and the system works under unstable power situation.

The power on duration and power down duration are longer in AC application. The system power on sequence protects the power on successful, but the power down situation is like DC low battery condition. When turn off the AC power, the VDD drops slowly and through the dead-band for a while.

3.1.3.2 THE SYSTEM OPERATING VOLTAGE DECSRIPTION

To improve the brown out reset needs to know the system minimum operating voltage which is depend on the system executing rate and power level. Different system executing rates have different system minimum operating voltage. The electrical characteristic section shows the system voltage to executing rate relationship.

System Rate (Fcpu)

Normally the system operation voltage area is higher than the system reset voltage to VDD, and the reset voltage is decided by LVD detect level. The system minimum operating voltage rises when the system executing rate upper even higher than system reset voltage. The dead-band definition is the system minimum operating voltage above the system reset voltage.

3.1.3.3 BROWN-OUT RESET IMPROVEMENT

How to improve the brown reset condition? There are some methods to improve brown out reset as following.

- LVD reset
- Watchdog reset
- Reduce the system executing rate
- External reset circuit. (Zener diode reset circuit, Voltage bias reset circuit, External reset IC)

Note: The "Zener diode reset circuit", "Voltage bias reset circuit" and "External reset IC" can completely improve the brown out reset, DC low battery and AC slow power down conditions.

LVD reset:

The LVD (low voltage detector) is built-in SONiX 32-bit MCU to be brown out reset protection. When the VDD drops and is below LVD detect voltage, the LVD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, SW can monitor the signal by reading a dedicated status register. An additional threshold level can be selected to cause a forced reset of the chip. The LVD detect level is different by each MCU. The LVD voltage level is a point of voltage and not easy to cover all dead-band range. Using LVD to improve brown out reset is dependent on application requirement and environment. If the power variation is very deep, violent and trigger the LVD, the LVD can be the protection. If the power variation can touch the LVD detect level and make system work error, the LVD can't be the protection and need to other reset methods. More detail LVD information is in the electrical characteristic section.

Watchdog reset:

The watchdog timer is a protection to make sure the system executes well. Normally the watchdog timer would be clear at one point of program. Don't clear the watchdog timer in several addresses. The system executes normally and the watchdog won't reset system. When the system is under dead-band and the execution error, the watchdog timer can't be clear by program. The watchdog is continuously counting until overflow occurrence. The overflow signal of watchdog timer triggers the system to reset and return to normal mode after reset sequence. This method also can improve brown out reset condition and make sure the system to return normal mode.

If the system reset by watchdog and the power is still in dead-band, the system reset sequence won't be successful and the system stays in reset status until the power return to normal range.

Reduce the system executing rate:

If the system rate is fast and the dead-band exists, to reduce the system executing rate can improve the dead-band. The lower system rate is with lower minimum operating voltage. Select the power voltage that's no dead-band issue and find out the mapping system rate. Adjust the system rate to the value and the system exits the dead-band issue. This way needs to modify whole program timing to fit the application requirement.

External reset circuit:

The external reset methods also can improve brown out reset and is the complete solution. There are three external reset circuits to improve brown out reset including "Zener diode reset circuit", "Voltage bias reset circuit" and "External reset IC". These three reset structures use external reset signal and control to make sure the MCU be reset under power dropping and under dead-band. The external reset information is described in the next section.

3.1.4 EXTERNAL RESET

External reset function is controlled by <u>External RESET pin control (SYS0_EXRSTCTRL)</u> register. Default value is 1, which means external reset function is enabled. External reset pin is Schmitt Trigger structure and low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset operation actives in power on and normal running mode. During system power-up, the external reset pin must be high level input, or the system keeps in reset status. External reset sequence is as following.

• External reset (only external reset pin enable): System checks external reset pin status. If external reset pin is not high level, the system keeps reset status and waits external reset pin released.

- System initialization: All system registers is set as initial conditions and system is ready.
- Oscillator warm up: Oscillator operation is successfully and supply to system clock.
- **Program executing:** Power on sequence is finished and program executes from Boot loader.

The external reset can reset the system during power on duration, and good external reset circuit can protect the system to avoid working at unusual power condition, e.g. brown out reset in AC power application.

3.1.4.1 SIMPLY RC RESET CIRCUIT

This is the basic reset circuit, and only includes R1 and C1. The RC circuit operation makes a slow rising signal into reset pin as power up. The reset signal is slower than VDD power up timing, and system occurs a power on signal from the timing difference.

Note: The reset circuit is no any protection against unusual power or brown out reset.

3.1.4.2 DIODE & RC RESET CIRCUIT

This is the better reset circuit. The R1 and C1 circuit operation is like the simply reset circuit to make a power on signal.

The reset circuit has a simply protection against unusual power. The diode offers a power positive path to conduct higher power to VDD. It is can make reset pin voltage level to synchronize with VDD voltage. The structure can improve slight brown out reset condition.

Note: The R2 100 ohm resistor of "Simply reset circuit" and "Diode & RC reset circuit" is necessary to limit any current flowing into reset pin from external capacitor C in the event of reset pin breakdown due to Electrostatic Discharge (ESD) or Electrical Over-stress (EOS).

3.1.4.3 ZENER DIODE RESET CIRCUIT

The Zener diode reset circuit is a simple low voltage detector and can **improve brown out reset condition completely**. Use Zener voltage to be the active level. When VDD voltage level is above "Vz + 0.7V", the C terminal of the PNP transistor outputs high voltage and MCU operates normally. When VDD is below "Vz + 0.7V", the C terminal of the PNP transistor outputs low voltage and MCU is in reset mode. Decide the reset detect voltage by Zener specification. Select the right Zener voltage to conform the application.

3.1.4.4 VOLTAGE BIAS RESET CIRCUIT

The voltage bias reset circuit is a low cost voltage detector and can **improve brown out reset condition completely**.

The operating voltage is not accurate as Zener diode reset circuit. Use R1, R2 bias voltage to be the active level. When VDD voltage level is above or equal to " $0.7V \times (R1 + R2) / R1$ ", the C terminal of the PNP transistor outputs high voltage and MCU operates normally. When VDD is below " $0.7V \times (R1 + R2) / R1$ ", the C terminal of the PNP transistor outputs low voltage and MCU is in reset mode.

Decide the reset detect voltage by R1, R2 resistances. Select the right R1, R2 value to conform the application. In the circuit diagram condition, the MCU's reset pin level varies with VDD voltage variation, and the differential voltage is 0.7V. If the VDD drops and the voltage lower than reset pin detect level, the system would be reset. If want to make the reset active earlier, set the R2 > R1 and the cap between VDD and C terminal voltage is larger than 0.7V. The external reset circuit is with a stable current through R1 and R2. For power consumption issue application, e.g. DC power system, the current must be considered to whole system power consumption.

Note: Under unstable power condition as brown out reset, "Zener diode reset circuit" and "Voltage bias reset circuit" can protects system no any error occurrence as power dropping. When power drops below the reset detect voltage, the system reset would be triggered, and then system executes reset sequence. That makes sure the system work well under unstable power situation.

3.1.4.5 EXTERNAL RESET IC

The external reset circuit also uses external reset IC to enhance MCU reset performance. This is a high cost and good effect solution. By different application and system requirement to select suitable reset IC. The reset circuit can improve all power variation.

3.1.5 SOFTWARE RESET

The entire MCU, including the core, can be reset by software by setting the SYSRESREQ bit in the <u>AIRC (Application</u> <u>Interrupt and Reset Control)</u> register in Cortex-M0 spec.

The software-initiated system reset sequence is as follows:

- 1. A software reset is initiated by setting the SYSRESREQ bit.
- 2. An internal reset is asserted.
- 3. The internal reset is deasserted and the MCU loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

3.2 SYSTEM CLOCK

Different clock sources can be used to drive the system clock (SYSCLK):

- 48 MHz internal high speed RC (IHRC)
- 32 KHz internal low speed RC (ILRC)

Each clock source can be switched on or off independently when it is not used, to optimize power consumption.

The micro-controller is a dual clock system. There are high-speed clock and low-speed clock. The high-speed clock is generated from the external oscillator & on-chip PLL circuit. The low-speed clock is generated from on-chip low-speed RC oscillator circuit (ILRC 32KHz).

3.2.1 INTERNAL RC CLOCK SOURCE

3.2.1.1 Internal High-speed RC Oscillator (IHRC)

The internal high-speed oscillator is 48MHz RC type. The accuracy is $\pm 0.2\%$ under commercial condition. The IHRC can be switched on and off using the IHRCEN bit in <u>Analog Block Control register (SYSO_ANBCTRL)</u>.

3.2.1.2 Internal Low-speed RC Oscillator (ILRC)

The system low clock source is the internal low-speed oscillator built in the micro-controller. The low-speed oscillator uses RC type oscillator circuit. The frequency is affected by the voltage and temperature of the system. In common condition, the frequency of the RC oscillator is about 32 KHz.

▶ Note: The ILRC can ONLY be switched on and off by HW.

3.2.2 SYSTEM CLOCK (SYSCLK) SELECTION

After a system reset, the IHRC is selected as system clock. When a clock source is used directly as system clock, it is not possible to stop it.

A switch from one clock source to another occurs only if the target clock source is ready (clock stable after startup delay). If a clock source which is not yet ready is selected, the switch will occur when the clock source is ready.

Ready bits in <u>SYS0_CSST</u> register indicate which clock(s) is (are) ready and SYSCLKST bits in <u>SYS0_CLKCFG</u> register indicate which clock is currently used as system clock.

3.2.3 CLOCK-OUT CAPABITITY

The MCU clock output (CLKOUT) capability allows the clock to be output onto the external CLKOUT pin. The configuration registers of the corresponding GPIO port must be programmed in alternate function mode.

One of 3 clock signals can be selected as clock output:

- 1. HCLK
- 2. IHRC
- 3. ILRC

The selection is controlled by the CLKOUTSEL bits in <u>SYS1_AHBCLKEN</u> register.

3.3 SYSTEM CONTROL REGISTERS 0

Base Address: 0x4006 0000

3.3.1 Analog Block Control register (SYS0_ANBCTRL)

Address Offset: 0x00

Reset value: 0x0000 0001

Note: IHRCEN bit can NOT be cleared if the IHRC is selected as system clock or is selected to become the system clock.

Bit	Name	Description	Attribute	Reset
31:1	Reserved		R	0
0	IHRCEN	Internal high-speed clock enable. Note: This bit can NOT be cleared if the IHRC is selected as system clock or is selected to become the system clock. 0: Disable internal 48 MHz RC oscillator. 1: Enable internal 48 MHz RC oscillator.	R/W	1

3.3.2 Clock Source Status register (SYS0_CSST)

Address Offset: 0x08

Bit	Name	Description	Attribute	Reset
31:1	Reserved		R	0
0	IHRCRDY	IHRC ready flag. After the IHRCEN bit is cleared, IHRCRDY is cleared by HW after 6 IHRC clock cycles. 0: IHRC not ready. 1: IHRC ready.	R	1

3.3.3 System Clock Configuration register (SYS0_CLKCFG)

Address Offset: 0x0C

Bit	Name	Description	Attribute	Reset
31:7	Reserved		R	0
6:4	SYSCLKST[2:0]	System clock switch status Set and cleared by HW to indicate which clock source is used as system clock. 000: IHRC is used as system clock 001: ILRC is used as system clock Other: Reserved	R	0
3	Reserved		R	0
2:0	SYSCLKSEL[2:0]	System clock switch Set and cleared by SW. 000: IHRC 001: ILRC	R/W	0

Other: Reserved

3.3.4 AHB Clock Prescale register (SYS0_AHBCP)

Address Offset: 0x10

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2:0	AHBPRE[2:0]	AHB clock source prescale value 000: SYSCLK / 1 001: SYSCLK / 2 010: SYSCLK / 4 011: SYSCLK / 8 100: SYSCLK / 16 101: SYSCLK / 32 110: SYSCLK / 64 111: SYSCLK / 128 Other: Reserved	R/W	010b

3.3.5 System Reset Status register (SYS0_RSTST)

Address Offset: 0x14

This register contains the reset source.

Bit	Name	Description	Attribute	Reset
31:5	Reserved		R	0
4	PORRSTF	 POR reset flag Set by HW when a POR reset occurs. 0: Read→No POR reset occurred Write→Clear this bit 1: POR reset occurred. 	R/W	1
3	EXTRSTF	External reset flag Set by HW when a reset from the <u>RESET</u> pin occurs. 0: Read→No reset from RESET pin occurred Write→Clear this bit 1: Reset from RESET pin occurred.	R/W	0
2	LVDRSTF	LVD reset flag Set by HW when a LVD reset occurs. 0: Read→No LVD reset occurred Write→Clear this bit 1: LVD reset occurred.	R/W	0
1	WDTRSTF	WDT reset flag Set by HW when a WDT reset occurs. 0: Read→No watchdog reset occurred Write→Clear this bit 1: Watchdog reset occurred.	R/W	0
0	SWRSTF	Software reset flag Set by HW when a software reset occurs. 0: Read→No software reset occurred Write→Clear this bit 1: Software reset occurred.	R/W	1

3.3.6 LVD Control register (SYS0_LVDCTRL)

Address Offset: 0x18

The LVD control register selects four separate threshold values for generating a LVD interrupt to the NVIC or LVD reset.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15	LVDEN	LVD enable. 0: Disable. 1: Enable.	R/W	1
14	LVDRSTEN	LVD Reset enable. 0: Disable → Flag. 1: Enable → Reset.	R/W	0
13:7	Reserved		R	0
6:2	LVDINTLVL[1:0]	LVD interrupt level. 01: 2.40V. 10: 3.30V. Other: Reserved.	R/W	10b
4:3	Reserved		R	0
2:0	LVDRSTLVL[2:0]	LVD reset level. 010: 2.40V. 100: 3.30V. Other: Reserved.	R/W	010b

3.3.7 External RESET Pin Control register (SYS0_EXRSTCTRL)

Address Offset: 0x1C

Bit	Name	Description	Attribute	Reset
31:1	Reserved		R	0
0	RESETDIS	External RESET pin disable bit. 0: Enable external <u>RESET</u> pin. (P3.8 acts as <u>RESET</u> pin) 1: Disable. (P3.8 acts as GPIO pin)	R/W	1

3.3.8 SWD Pin Control register (SYS0_SWDCTRL)

Address Offset: 0x20

Bit	Name	Description	Attribute	Reset
31:1	Reserved		R	0
0	SWDDIS	SWD pin disable bit. 0: Enable SWD pin. (P3.7 acts as SWDIO pin, P3.6 acts as SWCLK pin) 1: Disable. (P3.7 and P3.6 act as GPIO pins)	R/W	0

3.3.9 Interrupt Vector Table Mapping register (SYS0_IVTM)

Address Offset: 0x24

This register decides whether the ARM interrupt vector table is mapping to User ROM or SRAM.

Bit	Name	Description	Attribute	Reset
31:16	IVTMKEY[15:0]	IVTM register key. Read as 0. Behaviour of writing to this register is ignored unless writing 0xA5A5 to IVTMKEY at the same time.	W	0
15:2	Reserved		R	0
1:0	IVTM[1:0]	Interrupt table mapping selection. 01: Map to User ROM. 10: Map to SRAM. 00,11: Reserved.	R/W	01b

3.3.10 Noise Detect Control register (SYS0_NDTCTRL)

Address Offset: 0x28

Bit	Name	Description	Attribute	Reset
31:2	Reserved		R	0
1	NDT5V_IE	NDT0: Disablefor VDD 5V interrupt enable bit. 0: Disable. 1: Enable. (The noise on IC VDD 5V domain detected by NDT5V IP will trigger.NDT interrupt IRQ0)	R/W	0
0	Reserved		R	0

3.3.11 Noise Detect Status register (SYS0_NDTSTS)

Address Offset: 0x2C

Bit	Name	Description	Attribute	Reset
31:2	Reserved		R	0
1	NDT5V_DET	Power noise status of NDT5V IP. 0: No power noise is detected. 1: Power noise is detected by NDT5V IP. *Cleared by write 1 to SYS0_NDTSTS[1]	R/W	0
0	Reserved		R	0

3.3.12 Anti-EFT Ability Control register (SYS0_ANTIEFT)

Address Offset: 0x30

This register decides the HW anti-EFT ability.

SN32F260 Series 32-Bit Cortex-M0 Micro-Controller

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2:0	AEFT[2:0]	HW anti-EFT ability. 000: No 010: Low 011: Medium 100: Strong	R/W	000

3.4 SYSTEM CONTROL REGISTERS 1

Base Address: 0x4005 E000

3.4.1 AHB Clock Enable register (SYS1_AHBCLKEN)

Address Offset: 0x00

The SYS_AHBCLKEN register enables the AHB clock to individual system and peripheral blocks.

* Note:

- 1. When the clock is disabled, the peripheral register values may not be readable by SW and the value returned is always 0x0.
- 2. HW will replace GPIO with CLKOUT function directly if CLKOUTSEL is Not 0.

Bit	Name	Description	Attribute	Reset
31	Reserved		R	0
30:28	CLKOUTSEL[2:0]	Clock output source 000: Disable 001: ILRC clock 100: HCLK 101: IHRC clock Others: Reserved.	R/W	0
27:25	Reserved		R	0
24	WDTCLKEN	Enables clock for WDT. 0: Disable 1: Enable	R/W	1
23:22	Reserved		R	0
21	I2C0LKEN	Enables clock for I2C0. 0: Disable 1: Enable	R/W	0
20:13	Reserved		R	0
12	SPIOCLKEN	Enables clock for SPI0. 0: Disable 1: Enable	R/W	0
11:8	Reserved		R	0
7	CT16B1CLKEN	Enables clock for CT16B1. 0: Disable 1: Enable	R/W	0
6	CT16B0CLKEN	Enables clock for CT16B0. 0: Disable 1: Enable	R/W	0
5	Reserved		R	0
4	USBCLKEN	Enable clock for USB 0: Disable 1: Enable	R/W	0
3	P3CLKEN	Enables clock for P3. 0: Disable 1: Enable	R/W	1
2	P2CLKEN	Enables clock for P2. 0: Disable 1: Enable	R/W	1
1	P1CLKEN	Enables clock for P1. 0: Disable 1: Enable	R/W	1
0	P0CLKEN	Enables clock for P0.	R/W	1

0: Disable 1: Enable

3.4.2 APB Clock Prescale register 1 (SYS1_APBCP1)

Address Offset: 0x08

Note: Must reset the corresponding peripheral with SYS1_PRST register after changing the prescale value.

Bit	Name	Description	Attribute	Reset
31	Reserved	CT16B2 clock source prescaler I2C1 clock source prescaler	R	0
30:28	CLKOUTPRE [2:0]	Clock-out source prescaler. 000: Clock-out source / 1. 001: Clock-out source / 2. 010: Clock-out source / 4. 011: Clock-out source / 8. 100: Clock-out source / 16. 101: Clock-out source / 32. 110: Clock-out source / 64. 111: Clock-out source / 128. Other: Reserved	R/W	0
27:23	Reserved		R	0
22:20	WDTPRE[2:0]	WDT clock source prescaler. 000: WDT_PCLK = WDT clock source / 1. 001: WDT_PCLK = WDT clock source / 2. 010: WDT_PCLK = WDT clock source / 4. 011: WDT_PCLK = WDT clock source / 8. 100: WDT_PCLK = WDT clock source / 16. 101: WDT_PCLK = WDT clock source / 32. Other: Reserved	R/W	0
19:18	Reserved		R	0
17:16	SYSTICKPRE[1:0]	SysTick clock source prescaler 00: SysTick_PCLK = HCLK / 1. 01: SysTick_PCLK = HCLK / 2. 10: SysTick_PCLK = HCLK / 4. 11: SysTick_PCLK = HCLK / 8.	R/W	0
15:0	Reserved		R	0

4 SYSTEM OPERATION MODE

4.1 OVERVIEW

The chip builds in three operating mode for difference clock rate and power saving reason. These modes control oscillators, op-code operation and analog peripheral devices' operation.

- Normal mode
- Sleep mode
- Deep sleep mode

4.2 NORMAL MODE

In Normal mode, the ARM Cortex-M0 core, memories, and peripherals are clocked by the system clock. The <u>SYS1 AHBCLKEN</u> register controls which peripherals are running.

Selected peripherals have individual peripheral clocks with their own clock dividers in addition to the system clock. The peripheral clocks can be disabled respectively.

The power to various analog blocks (IHRC, Flash, and LVD) can be controlled at any time individually through the enable bit of all blocks.

4.3 LOW-POWER MODES

There are two special modes of processor power reduction: Sleep mode, and Deep-sleep mode. The <u>PMU_CTRL</u> register controls which mode is desired.

The CPU clock rate may also be controlled as needed by changing clock sources, and/or altering the system clock divider value. This allows a trade-off of power versus processing speed based on application requirements.

Run-time power control allows disable the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider for power control.

- 1. The debug mode is not supported in Deep-sleep mode.
- 2. The pins which are not pin-out shall be set correctly to decrease power consumption in lowpower modes. Strongly recommended to set these pins as input pull-up.

4.3.1 SLEEP MODE

In Sleep mode, the system clock to the ARM Cortex-M0 core is stopped and execution of instructions is suspended.

Peripheral functions, if selected to be clocked in <u>SYS1 AHBCLKEN</u> register, continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

The power state of the analog blocks (IHRC, Flash, and LVD) is determined by the enable bit of all blocks.

The processor state and registers, peripheral registers, and internal SRAM values are maintained and the logic levels of the pins remain static.

^{*} Note:

Wake up the chip from Sleep mode by an interrupt occurs.

The RESET pin has keep functionality in Sleep mode.

The Sleep mode is entered by using the following steps:

- 1. Write 4 to <u>PMU_CTRL</u> register.
- 2. Execute ARM Cortex-M0 WFI instruction.

4.3.2 DEEP-SLEEP MODE

In Deep-sleep mode, the system clock to the ARM Cortex-M0 core is stopped, and execution of instructions is suspended.

The clock to the peripheral functions are stopped because the power state of oscillators are powered down, the clock source are stopped.

The processor state and registers, peripheral registers, and internal SRAM values are maintained and the logic levels of the pins remain static.

All GPIO pins are served as wakeup pins. The user must program the GPIO registers for each pin to set the appropriate edge polarity for the corresponding wakeup event, only edge sensitive is supported to wakeup MCU. The system will exit Deep-sleep mode when GPIO indicates a GPIOn interrupt to the ARM core. Furthermore, the interrupts corresponding to each input must be enabled in the NVIC. Wake up time is 56us at the VDD = 3.3V.

The RESET pin has keep functionality in Deep-sleep mode.

The Deep-sleep mode is entered by using the following steps:

- 1. Write 2 to PMU CTRL register.
- 2. Execute ARM WFI instruction.

The advantage of the Deep-sleep mode is that can power down clock generating blocks such as oscillators, thereby gaining far greater dynamic power savings over Sleep mode. In addition, the Flash can be powered down in Deep-sleep mode resulting in savings in static leakage power, however at the expense of longer wake-up times for the Flash memory.

4.4 WAKEUP

4.4.1 OVERVIEW

Under low power mode, program doesn't execute. The wakeup trigger can wake the system up to normal mode. The wakeup function builds in interrupt operation and trigger system executing interrupt service routine as system wakeup occurrence.

- * The wakeup trigger sources of the Sleep mode are all interrupts and the <u>RESET</u> pin.
- The wakeup trigger sources of the Deep-sleep mode are the GPIO interrupt, CT16B0/1 interrupt, and the <u>RESET</u> pin.

4.4.2 WAKEUP TIME

When the system is in Sleep mode, the high clock is enabled or disabled by F/W. If the high clock stops and MCU is waken up from Sleep mode, MCU waits for 2048 external high-speed oscillator clocks and 32 internal high-speed oscillator clocks as the wakeup time to stable the oscillator circuit. After the wakeup time, the system goes into the

SONiX TECHNOLOGY CO., LTD

normal mode.

¥

Note: Wakeup from Sleep mode spends NO wakeup time if the clock doesn't stop.

When the system is in Deep-sleep mode, the high clock will stop. When MCU is waken up from Deep-sleep mode, MCU waits 10us wakeup time. After the wakeup time, the system goes into the normal mode.

The value of the IHRC wakeup time is as the following.

The total Wakeup time of IHRC = 10us

 \blacktriangleright Example: F_{IHRC}=48MHz, the wakeup time is as the following.

The total Wakeup time = $10us (F_{IHRC} = 48MHz)$

***** Note: The high clock start-up time is depended on the VDD and oscillator type of high clock.

4.5 STATE MACHINE OF PMU

4.6 OPERATION MODE COMPARSION TABLE

		Low-Power Mode			
Operation Mode	Normal Mode	Sleep Mode		Deep-Sleep Mode	
HCLK	IHRC, ILRC	IHRC	ILRC	-	
IHRC	HW Enable	By IHRCEN	FW Disable	HW Disable	
ILRC	HW Enable	HW Enable	HW Enable	HW Disable	
Cortex-M0	Running	Stop	Stop	Stop	
Flash ROM	Enable/Standby	Standby	Standby	Enable/Standby	
Data RAM	Enable/ Standby	Standby	Standby	Standby	
3-level LVD	By LVDEN	By L\	/DEN	By LVDEN	
USB	By USBEN	By US	SBEN	Disable	
Peripherals	By Enable	e bit of each peripher	als	Disable HCLK	
IO status	Output Low	Outpu	it Low	Output Low	
Wakeup Source	N/A	All interrupts, RESET pin		GPIO0/1/2/3 interrupt, RESET pin	

4.7 PMU REGISTERS

Base Address: 0x4003 2000

4.7.1 Power Control register (PMU_CTRL)

Address Offset: 0x40

The power control register selects whether one of the ARM Cortex-M0 controlled power-down modes (Sleep mode or Deep-sleep mode) is entered and provides the flags for Sleep or Deep-sleep modes respectively.

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2:0	MODE[2:0]	Low power mode selection 010: WFI instruction will make MCU enter Deep-sleep mode. 100: WFI instruction will make MCU enter Sleep mode. Other: Disable	R/W	0

5 GENERAL PURPOSE I/O PORT (GPIO)

5.1 OVERVIEW

Digital ports can be configured input/output by SW

- Each individual port pin can serve as external interrupt input pin.
- Interrupts can be configured on single falling or rising edges and on both edges.
- Individual interrupt levels can be programmed. Internal pull-up resistor.
- All GPIO pins are inputs and floating by default

5.2 GPIO MODE

The MODE bits in the <u>GPIOn CFG</u> (n=0,1,2,3) register allow the selection of on-chip pull-up resistors, for each pin or select the inactive mode or inactive with Schmitt trigger disabled mode.

The possible on-chip resistor configurations are pull-up enabled, no pull-up/pull-down with Schmitt trigger enabled (default), or no pull-up/pull-down with Schmitt trigger disabled.

5.3 GPIO REGISTERS

Base Address: 0x4004 4000 (GPIO 0) 0x4004 6000 (GPIO 1) 0x4004 8000 (GPIO 2) 0x4004 A000 (GPIO 3)

5.3.1 GPIO Port n Data register (GPIOn_DATA) (n=0,1,2,3)

Address offset: 0x00

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	DATA[15:0]	Input data (read) or output data (write) for Pn.0 to Pn.15	R/W	0

5.3.2 GPIO Port n Mode register (GPIOn_MODE) (n=0,1,2,3)

Address offset: 0x04

 Note: HW will switch I/O Mode directly when Specific function (Peripheral) is enabled, not through GPIOn_MODE register.

Bit	Name	Description	Attribute	Reset
31:16	CURRENT[15:0]	Driving/Sinking current selection (x = 0 to 15) 0: Typical 10mA 1: Typical 20mA	R/W	0
15:0	MODE[15:0]	Selects pin x as input or output (x = 0 to 15) 0: Pn.x is configured as input 1: Pn.x is configured as output.	R/W	0

5.3.3 GPIO Port n Configuration register (GPIOn_CFG) (n=0,1,2,3)

Address offset: 0x08 Reset value: n=0 →0xAAAA AAAA n=1 →0x0000 0AAA n=2 →0x002A AAAA n=3 →0x0002 AAAA

Note: HW will switch I/O Mode directly when Specific function (Peripheral) is enabled, not through GPIOn_MODE register.

Bit	Name	Description	Attribute	Reset
31:30	CFG15[1:0]	Configuration of Pn.15 00: Pull-up resistor enabled. 01: Reserved. 10: Inactive. (no pull-up resistor enabled, Schmitt trigger enabled). 11: Inactive. (no pull-up resistor enabled, Schmitt trigger disabled, Data register keep low)	R/W	10b

SN32F260 Series 32-Bit Cortex-M0 Micro-Controller

		register keep low)		
7:6	CFG3[1:0]	 Configuration of Pn.3 00: Pull-up resistor enabled. 01: Reserved. 10: Inactive. (no pull-up resistor enabled, Schmitt trigger enabled). 11: Inactive. (no pull-up resistor enabled, Schmitt trigger disabled, Data register keep low) 	R/W	10b
5:4	CFG2[1:0]	 Configuration of Pn.2 00: Pull-up resistor enabled. 01: Reserved. 10: Inactive. (no pull-up resistor enabled, Schmitt trigger enabled). 11: Inactive. (no pull-up resistor enabled, Schmitt trigger disabled, Data register keep low) 	R/W	10b
3:2	CFG1[1:0]	 Configuration of Pn.1 00: Pull-up resistor enabled. 01: Reserved. 10: Inactive. (no pull-up resistor enabled, Schmitt trigger enabled). 11: Inactive. (no pull-up resistor enabled, Schmitt trigger disabled, Data register keep low) 	R/W	10b
1:0	CFG0[1:0]	Configuration of Pn.0 00: Pull-up resistor enabled. 01: Reserved. 10: Inactive. (no pull-up resistor enabled, Schmitt trigger enabled). 11: Inactive. (no pull-up resistor enabled, Schmitt trigger disabled, Data register keep low)	R/W	10b

5.3.4 GPIO Port n Interrupt Sense register (GPIOn_IS) (n=0,1,2,3)

Address offset: 0x0C

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	IS[15:0]	 Selects interrupt on pin x as level or edge sensitive. (x = 0 to 15) 0: Interrupt on Pn.x is configured as edge sensitive. 1: Interrupt on Pn.x is configured as event sensitive. 	R/W	0

5.3.5 GPIO Port n Interrupt Both-edge Sense register (GPIOn_IBS) (n=0,1,2,3)

Address offset: 0x10

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	IBS[15:0]	Selects interrupt on Pn.x to be triggered on both edges. (x = 0 to 15) 0: Interrupt on Pn.x is controlled through register GPIOn_IEV. 1: Both edges on Pn.x trigger an interrupt.	R/W	0

5.3.6 GPIO Port n Interrupt Event register (GPIOn_IEV) (n=0,1,2,3)

Address offset: 0x14

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	IEV[15:0]	Selects interrupt on pin x to be triggered rising or falling edges. (x = 0 to 15) 0: Depending on setting in register GPIOn_IS, Rising edges or HIGH level on Pn.x trigger an interrupt.	R/W	0

1: Depending on setting in register GPIOn_IS, Falling edges or LOW level on Pn.x trigger an interrupt.

5.3.7 GPIO Port n Interrupt Enable register (GPIOn_IE) (n=0,1,2,3)

Address offset: 0x18

Bits set to HIGH in the GPIOn_IE register allow the corresponding pins to trigger their individual interrupts. Clearing a bit disables interrupt triggering on that pin.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	IE[15:0]	Selects interrupt on pin x to be enabled. (x = 0 to 15) 0: Disable Interrupt on Pn.x. 1: Enable Interrupt on Pn.x.	R/W	0

5.3.8 GPIO Port n Raw Interrupt Status register (GPIOn_RIS) (n=0,1,2,3)

Address offset: 0x1C

This register indicates the status for GPIO control raw interrupts. A GPIO interrupt is sent to the interrupt controller if the corresponding bit in GPIOn_IE register is set.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	IF[15:0]	GPIO raw interrupt flag. (x = 0 to 15)0: No interrupt on Pn.x.1: Interrupt requirements met on Pn.x.	R	0

5.3.9 GPIO Port n Interrupt Clear register (GPIOn_IC) (n=0,1,2,3)

Address offset: 0x20

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	IC[15:0]	Selects interrupt flag on pin x to be cleared. (x = 0 to 15) 0: No effect. 1: Clear interrupt flag on Pn.x.	W	0

5.3.10 GPIO Port n Bits Set Operation register (GPIOn_BSET) (n=0,1,2,3)

Address offset: 0x24

In order for SW to set GPIO bits without affecting any other pins in a single write operation, the GPIO bit is set if the corresponding bit in the GPIOn_BSET register is set.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	BSET[15:0]	Bit Set enable. (x = 0 to 15) 0: No effect on Pn.x. 1: Set Pn.x to "1".	W	0

5.3.11 GPIO Port n Bits Clear Operation register (GPIOn_BCLR) (n=0,1,2,3)

Address offset: 0x28

In order for SW to clear GPIO bits without affecting any other pins in a single write operation, the GPIO bit is cleared if the corresponding bit in this register is set.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	BCLR[15:0]	Bit clear enable. (x = 0 to 15) 0: No effect on Pn.x. 1: Clear Pn.x.	W	0

6 16-BIT TIMER0 WITH CAPTURE FUNCTION

6.1 OVERVIEW

Each Counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, up to 23 match and 1 global registers can be used to provide a single-edge controlled PWM output on the match output pins.

6.2 FEATURES

- > Two 16-bit counter/timers with a programmable 8-bit prescaler.
- Counter or timer operation
- Two 16-bit capture channels that can take a snapshot of the timer value when an input signal transitions. A capture event may also optionally generate an interrupt.
- > The timer and prescaler may be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.
- Four 16-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- > Up to 22(CT16B1) PWM outputs corresponding to match registers with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.

6.3 **PIN DESCRIPTION**

Pin Name	Туре	Description	GPIO Configuration
CT16Bn_CAP0	I	Capture channel input 0.	Depends on GPIOn_CFG
CT16Bn_PWMx	0	Output channel x of Match/PWM output.	

6.4 BLOCK DIAGRAM

6.5 TIMER OPERATION

6.5.1 Edge-aligned Up-counting Mode

The following figure shows a timer configured to reset the count and generate an interrupt on match. The <u>CT16Bn_PRE</u> register is set to 2, and the <u>CT16Bn_MRx</u> register is set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

PCLK									
CT16Bn_PC		2	0 1	2	0	1	2	0	/
CT16Bn_TC	4		5		\times	6		0	_
TC Reset									-
Interrupt									

The following figure shows a timer configured to stop and generate an interrupt on match. The <u>CT16Bn_PRE</u> register is set to 2, and the <u>CT16Bn_MRx</u> register is set to 6. In the next clock after the timer reaches the match value, the CEN bit in <u>CT16Bn_TMRCTRL</u> register is cleared, and the interrupt indicating that a match occurred is generated.

PCLK							
CT16Bn_PC	2	0 1	2	0			
CT16Bn_TC	4	5			6		
CEN bit		1				0	
Interrupt							-

6.6 **PWM**

6.6.1 PWM Mode 1

> PWMn is 0 when TC<MRn during Up-counting period.

Take Edge-aligned Up-counting Mode as example,

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value in CT16Bn_MR0~3 registers is equal to zero.
- 2. Each PWM output will go HIGH when its match value is reached. If no match occurs, the PWM output remains continuously LOW.
- 3. If a match value larger than the PWM cycle length is written to the CT16Bn_MR0~3 registers, and the PWM signal is HIGH already, then the PWM signal will be cleared on the next start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick. Therefore, the PWM output will always consist of a one clock tick wide positive pulse with a period determined by the PWM cycle length.
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

Note: When the match outputs are selected to perform as PWM outputs, the timer reset (MRnRST) and timer stop (MRnSTOP) bits in <u>CT16Bn_MCTRL</u> register must be set to zero except for the match register setting the PWM cycle length. For this register, set the MRnR bit to one to enable the timer reset when the timer value matches the value of the corresponding match register.

> PWMn is 1 when TC<MRn during Up-counting period.

Take Edge-aligned up-counting Mode as example,

- 1. All single edge controlled PWM outputs go HIGH at the beginning of each PWM cycle (timer is set to zero) unless their match value in CT16Bn_MR0~3 registers is equal to zero.
- 2. Each PWM output will go LOW when its match value is reached. If no match occurs, the PWM output remains continuously HIGH.
- 3. If a match value larger than the PWM cycle length is written to the CT16Bn_MR0~3 registers, and the PWM signal is LOW already, then the PWM signal will go HIGH on the next start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to HIGH on the next clock tick. Therefore, the PWM output will always consist of a one clock tick wide low pulse with a period determined by the PWM cycle length.
- 5. If a match register is set to zero, then the PWM output will go LOW the first time the timer goes back to zero and will stay LOW continuously.

Note: When the match outputs are selected to perform as PWM outputs, the timer reset (MRnRST) and timer stop (MRnSTOP) bits in <u>CT16Bn_MCTRL</u> register must be set to zero except for the match register setting the PWM cycle length. For this register, set the MRnR bit to one to enable the timer reset when the timer value matches the value of the corresponding match register.

6.7 CT16Bn REGISTERS

Base Address: 0x4000 0000 (CT16B0) 0x4000 2000 (CT16B1)

6.7.1 CT16Bn Timer Control register (CT16Bn_TMRCTRL) (n=0,1)

Address Offset: 0x00

 Note: In order to initial TC and PC correctly, SW shall reset TC and PC by setting CRST to 1, and then enable counter by setting CRST to 1.

Bit	Name	Description	Attribute	Reset
31:2	Reserved		R	0
1	CRST	 Counter Reset. 0: Disable counter reset. 1: Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. This is cleared by HW when the counter reset operation finishes. 	R/W	0
0	CEN	Counter Enable 0: Disable Counter. 1: Enable Timer Counter and Prescale Counter for counting. CEN bit shall be set at last! * Always Edge-aligned Up-counting mode	R/W	0

6.7.2 CT16Bn Timer Counter register (CT16Bn_TC) (n=0,1)

Address Offset: 0x04

The 16-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count. Unless it is reset before reaching its upper limit, the TC will count up to the value 0x0000FFFF and then wrap back to the value 0x00000000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	TC[15:0]	Timer Counter.	R/W	0

6.7.3 CT16Bn Prescale register (CT16Bn_PRE) (n=0,1)

Address Offset: 0x08

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	PRE[7:0]	Prescale max value.	R/W	0

6.7.4 CT16Bn Prescale Counter register (CT16Bn_PC) (n=0,1)

Address Offset: 0x0C

The 8-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, etc.

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	PC[7:0]	Prescale Counter.	R/W	0

6.7.5 CT16Bn Count Control register (CT16Bn_CNTCTRL) (n=0)

Address Offset: 0x10

This register is used to select between Timer and Counter mode, and in Counter mode to select the pin and edges for counting.

When Counter Mode is chosen as a mode of operation, the CAP input (selected by the CIS bits) is sampled on every rising edge of the PCLK clock. After comparing two consecutive samples of this CAP input, one of the following four events is recognized: rising edge, falling edge, either of edges or no changes in the level of the selected CAP input. Only if the identified event occurs, and the event corresponds to the one selected by CTM bits in this register, will the Timer Counter register be incremented.

Effective processing of the externally supplied clock to the counter has some limitations. Since two successive rising edges of the PCLK clock are used to identify only one edge on the CAP selected input, the frequency of the CAP input cannot exceed one half of the PCLK clock. Consequently, the duration of the HIGH/LOW levels on the same CAP input in this case cannot be shorter than $1/(2 \times PCLK)$.

Note: If Counter mode is selected, bit2~0 of Capture Control (CAPCTRL) register must be programmed as 0x0.

Bit	Name	Description	Attribute	Reset
31:4	Reserved		R	0
3:2	CIS[1:0]	Count Input Select. In counter mode (when CTM[1:0] are not 00), these bits select which CAP0 pin is sampled for clocking. 00: CT16Bn_CAP0 Other: Reserved.	R/W	0
1:0	CTM[1:0]	 Counter/Timer Mode. This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC). 00: Timer Mode: every rising PCLK edge 01: Counter Mode: TC is incremented on rising edges on the CAP0 input selected by CIS bits. 10: Counter Mode: TC is incremented on falling edges on the CAP0 input selected by CIS bits. 11: Counter Mode: TC is incremented on both edges on the CAP0 input selected by CIS bits. 	R/W	0

6.7.6 CT16Bn Match Control register (CT16Bn_MCTRL) (n=0)

Address Offset: 0x14

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2	MR0STOP	Stop MR0: TC and PC will stop and CEN bit will be cleared if MR0 matches TC.0: Disable.1: Enable.	R/W	0
1	MR0RST	Enable reset TC when MR0 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
0	MR0IE	Enable generating an interrupt based on CM[2:0] when MR0 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0

6.7.7 CT16Bn Match Control register (CT16Bn_MCTRL) (n=1)

Address Offset: 0x14

Bit	Name	Description	Attribute	Reset
31:30	Reserved		R	0
29	MR9STOP	Stop MR9: TC and PC will stop and CEN bit will be cleared if MR9 matches TC.0: Disable.1: Enable.	R/W	0
28	MR9RST	Enable reset TC when MR9 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
27	MR9IE	Enable generating an interrupt based on CM[2:0] when MR9 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
26	MR8STOP	Stop MR8: TC and PC will stop and CEN bit will be cleared if MR8 matches TC. 0: Disable. 1: Enable.	R/W	0
25	MR8RST	Enable reset TC when MR8 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
24	MR8IE	Enable generating an interrupt based on CM[2:0] when MR8 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
23	MR7STOP	Stop MR7: TC and PC will stop and CEN bit will be cleared if MR7 matches TC. 0: Disable. 1: Enable.	R/W	0
22	MR7RST	Enable reset TC when MR7 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only	R/W	0

21 MRR/E India STOP event. R/W 0 21 MR7/E Enable generating an interrupt based on CM[2:0] when MR7 matches the value in the TC. R/W 0 20 MR6STOP Enable generating an interrupt based on CM[2:0] when MR7 matches the rout watches TC. R/W 0 19 MR6STOP Enable. Finable. R/W 0 19 MR6RST Enable reset TC when MR6 matches TC. R/W 0 18 MR6IE Enable generating an interrupt based on CM[2:0] when MR6 matches the value in th TC. R/W 0 17 MR5STOP Enable generating an interrupt based on CM[2:0] when MR6 matches the value in th TC. R/W 0 18 MR6IE Enable generating an interrupt based on CM[2:0] when MR6 matches the value in th TC. R/W 0 19 MR5STOP Enable denerating an interrupt based on CM[2:0] when MR5 matches the value in the TC. R/W 0 18 MR5IE Enable denerating an interrupt based on CM[2:0] when MR5 matches the value in the TC. R/W 0 14 MR4STOP Enable denerating an interrupt based on CM[2:0] when MR5 matches the value in the TC.					
21 MR7IE Enable generating an interrupt based on CM(2:0) when MR7 matches the C. D. Disable. D. Disable. D. Disable. T. Enable. R/W 0 20 MR6STOP Stop MR6: TO and PC will stop and CEN bit will be cleared if MR8 matches TC. D. Disable. R/W 0 19 MR6RST Enable reset TC when MR6 matches TC. D. Disable. R/W 0 18 MR6IE Enable generating an interrupt based on CM(2:0) when MR6 matches the value in the TC. D. Disable. R/W 0 17 MR5STOP Enable generating an interrupt based on CM(2:0) when MR6 matches the value in the TC. D. Disable. R/W 0 16 MR6RST Enable generating an interrupt based on CM(2:0) when MR5 matches the value in the TC. D. Disable. R/W 0 15 MR6RST Enable generating an interrupt based on CM(2:0) when MR5 matches the value in the TC. D. Disable. R/W 0 14 MR4STOP Enable. Enable. R/W 0 15 MR5IE Enable. Enable. R/W 0 14 MR4STOP Enable. Enable. R/W 0			handle STOP event.		
20MR6STOPIt is not provided by the provided	21	MR7IE	Enable generating an interrupt based on CM[2:0] when MR7 matches the value in the TC. 0: Disable.	R/W	0
19 MR6RST Enable reset TC when MR6 matches TC. O Disable. 1 If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event. R/W 0 18 MR6IE Enable. Enable. To anble. Disable.	20	MR6STOP	Stop MR6: TC and PC will stop and CEN bit will be cleared if MR6 matches TC. 0: Disable. 1: Enable.	R/W	0
18 MR6IE Enable generating an interrupt based on CM[2:0] when MR6 matches the value in the C. Or Disable. R/W 0 17 MR5STOP Stop MR5: TC and PC will stop and CEN bit will be cleared if MR5 matches TC. R/W 0 16 MRSRST Enable reset TC when MR5 matches TC. R/W 0 15 MR5IE Enable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. R/W 0 14 MR4STOP Enable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. R/W 0 14 MR4STOP Stop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. R/W 0 13 MR4RST Stop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches the value in the TC. R/W 0 14 MR4STOP Stop MR4: TC and PC will stop and CEN bit will be cleared if MR3 matches the value in the TC. R/W 0 13 MR4RST Enable reset TC when MR4 matches TC. R/W 0 14 MR4SSTOP Stop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches the value in the TC. R/W 0 14 MR4RST Enable reset TC when MR4 matches TC. R/W 0 15 MR41E Enable reset TC when MR4 matches TC. R/W 0 16 Disab	19	MR6RST	Enable reset TC when MR6 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
17MRSSTOPStop MRS: TC and PC will stop and CEN bit will be cleared if MRS matches TC. 0. Disable.R/W016MR5RSTEnable reset TC when MR5 matches TC. 0. Disable.R/W016MR5RSTEnable reset TC when MR5 matches TC. 0. Disable.R/W015MR5IEEnable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. 0. Disable.R/W014MR4STOPStop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. 0. Disable.R/W014MR4STOPStop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. 0. Disable.R/W013MR4RSTEnable reset TC when MR4 matches TC. 0. Disable.R/W014MR4STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0. Disable.R/W012MR4IEEnable reset TC when MR4 matches TC. 0. Disable.R/W014MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0. Disable.R/W014MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0. Disable.R/W015In EnableStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0. Disable.R/W016MR3RSTEnable reset TC when MR3 matches TC. 0. Disable.R/W017MR3RSTEnable reset TC when MR3 matches TC. 0. Disable.R/W018 <td< th=""><th>18</th><th>MR6IE</th><th>Enable generating an interrupt based on CM[2:0] when MR6 matches the value in the TC. 0: Disable. 1: Enable.</th><th>R/W</th><th>0</th></td<>	18	MR6IE	Enable generating an interrupt based on CM[2:0] when MR6 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
16MR5RSTEnable reset TC when MR5 matches TC. 0. Disable. 1: Enable.R/W015MR5IEEnable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. 0. Disable. 1: Enable.R/W014MR4STOPStop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. 0. Disable. 1: Enable.R/W013MR4RSTEnable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. 0. Disable. 1: Enable.R/W014MR4STOPStop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. 0. Disable. 1: Enable.R/W013MR4RSTEnable reset TC when MR4 matches TC. 0. Disable. 1: Enable. 1: Enable.R/W012MR4IEEnable generating an interrupt based on CM[2:0] when MR4 matches the value in the TC. 0. Disable. 1: Enable.R/W011MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0. Disable. 1: Enable.R/W014MR3RSTEnable reset TC when MR3 matches TC. 0. Disable. 1: Enable.R/W014MR3RSTEnable reset TC when MR3 matches TC. 0. Disable. 1: Enable.R/W015MR3RSTEnable reset TC when MR4 matches TC. 0. Disable. 1: Enable.R/W016MR3RSTEnable reset TC when MR3 matches TC. 0. Disable. 1: Enable.R/W017MR3RSTEnable reset TC when MR3 matches TC. 0. Disable. 1: Enable.R/W0 <t< th=""><th>17</th><th>MR5STOP</th><th>Stop MR5: TC and PC will stop and CEN bit will be cleared if MR5 matches TC.0: Disable.1: Enable.</th><th>R/W</th><th>0</th></t<>	17	MR5STOP	Stop MR5: TC and PC will stop and CEN bit will be cleared if MR5 matches TC.0: Disable.1: Enable.	R/W	0
15MRSIEEnable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. 0: Disable. 1: Enable.RW014MR4STOPStop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. 0: Disable. 1: Enable.RW013MR4RSTEnable reset TC when MR4 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.RW012MR4IEStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 vande STOP event.RW011MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 value in the TC. 0: Disable. 1: Enable.RW011MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0: Disable. 1: Enable.R/W010MR3RSTStop MR3: TC when MR3 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.R/W09MR3IEStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 value in the TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.R/W08MR2STOPStop MR2: TC and PC will stop and CEN bit will be cleared if MR2 value in the TC. 0: Disable. 1: Enable.R/W07MR2RSTStop MR2: TC and PC will stop and CEN bit will be cleared if MR2 value in the TC. 0: Disable. 1: Enable.R/W07MR2RSTStop MR2: TC and PC will stop and CEN bit wi	16	MR5RST	 Enable reset TC when MR5 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event. 	R/W	0
14MR4STOPStop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. Disable. 1: Enable.R/W013MR4RSTEnable reset TC when MR4 matches TC. Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.R/W012MR4IEEnable generating an interrupt based on CM[2:0] when MR4 matches the value in the TC. 0: Disable. 1: Enable. 1: Enable.R/W011MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0: Disable. 1: Enable.R/W010MR3RSTEnable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 1: Enable.R/W010MR3RSTEnable reset TC when MR3 matches TC. 0: Disable. 1: Enable.R/W09MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 1: Enable.R/W09MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 1: Enable.R/W08MR2STOPStop MR2: TC and PC will stop and CEN bit will be cleared if MR2 matches TC. 0: Disable. 1: Enable.R/W07MR2RSTEnable reset TC when MR2 matches TC. 0: Disable. 1: Enable.R/W07MR2RSTEnable reset TC when MR2 matches TC. 0: Disable. 1: Enable.R/W07MR2RSTEnable reset TC when MR2 matches TC. 0: Disable. 1: Enable.R/W0	15	MR5IE	Enable generating an interrupt based on CM[2:0] when MR5 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
13MR4RSTEnable reset TC when MR4 matches TC. 0. Disable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.R/W012MR4IEEnable generating an interrupt based on CM[2:0] when MR4 matches the value in the TC. 0. Disable. 1: Enable.R/W011MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 	14	MR4STOP	Stop MR4: TC and PC will stop and CEN bit will be cleared if MR4 matches TC. 0: Disable. 1: Enable.	R/W	0
12MR4IEEnable generating an interrupt based on CM[2:0] when MR4 matches the value in the TC. 0: Disable.R/W011MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0: Disable.R/W010MR3RSTEnable reset TC when MR3 matches TC. 0: Disable. 1: Enable.R/W09MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the 	13	MR4RST	Enable reset TC when MR4 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
11MR3STOPStop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC. 0: Disable. 1: Enable.R/W010MR3RSTEnable reset TC when MR3 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.R/W09MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 1: Enable. * If user set MRxSTOP and CEN bit will be cleared if MR2 naide STOP event.R/W09MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the 	12	MR4IE	Enable generating an interrupt based on CM[2:0] when MR4 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
10MR3RSTEnable reset TC when MR3 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.R/W09MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 	11	MR3STOP	Stop MR3: TC and PC will stop and CEN bit will be cleared if MR3 matches TC.0: Disable.1: Enable.	R/W	0
9MR3IEEnable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 1: Enable.R/W08MR2STOPStop MR2: TC and PC will stop and CEN bit will be cleared if MR2 matches TC. 0: Disable. 1: Enable.R/W07MR2RSTEnable reset TC when MR2 matches TC. 0: Disable. 1: Enable.R/W07MR2RSTEnable reset TC when MR2 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only bande STOP eventR/W0	10	MR3RST	 Enable reset TC when MR3 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event. 	R/W	0
8 MR2STOP Stop MR2: TC and PC will stop and CEN bit will be cleared if MR2 matches TC. 0: Disable. 1: Enable. R/W 0 7 MR2RST Enable reset TC when MR2 matches TC. 0: Disable. 1: Enable. R/W 0 7 MR2RST Enable reset TC when MR2 matches TC. 0: Disable. 1: Enable. R/W 0	9	MR3IE	Enable generating an interrupt based on CM[2:0] when MR3 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
7 MR2RST Enable reset TC when MR2 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event R/W 0	8	MR2STOP	Stop MR2: TC and PC will stop and CEN bit will be cleared if MR2 matches TC.0: Disable.1: Enable.	R/W	0
	7	MR2RST	Enable reset TC when MR2 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0

6	MR2IE	Enable generating an interrupt based on CM[2:0] when MR2 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
5	MR1STOP	Stop MR1: TC and PC will stop and CEN bit will be cleared if MR1 matches TC. 0: Disable. 1: Enable.	R/W	0
4	MR1RST	Enable reset TC when MR1 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
3	MR1IE	Enable generating an interrupt based on CM[2:0] when MR1 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
2	MR0STOP	Stop MR0: TC and PC will stop and CEN bit will be cleared if MR0 matches TC. 0: Disable. 1: Enable.	R/W	0
1	MRORST	 Enable reset TC when MR0 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event. 	R/W	0
0	MR0IE	Enable generating an interrupt based on CM[2:0] when MR0 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0

6.7.8 CT16Bn Match Control register 2(CT16Bn_MCTRL2) (n=1)

Address Offset: 0x18

Bit	Name	Description	Attribute	Reset
31:30	Reserved		R	0
29	MR19STOP	Stop MR19: TC and PC will stop and CEN bit will be cleared if MR19 matches TC. 0: Disable. 1: Enable.	R/W	0
28	MR19RST	Enable reset TC when MR19 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
27	MR19IE	Enable generating an interrupt based on CM[2:0] when MR19 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
26	MR18STOP	Stop MR18: TC and PC will stop and CEN bit will be cleared if MR18 matches TC. 0: Disable. 1: Enable.	R/W	0
25	MR18RST	Enable reset TC when MR18 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
24	MR18IE	Enable generating an interrupt based on CM[2:0] when MR18 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0

SN32F260 Series 32-Bit Cortex-M0 Micro-Controller

23	MR17STOP	Stop MR17: TC and PC will stop and CEN bit will be cleared if MR17 matches TC.0: Disable.1: Enable.	R/W	0
22	MR17RST	Enable reset TC when MR17 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
21	MR17IE	Enable generating an interrupt based on CM[2:0] when MR17 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
20	MR16STOP	Stop MR16: TC and PC will stop and CEN bit will be cleared if MR16 matches TC.0: Disable.1: Enable.	R/W	0
19	MR16RST	Enable reset TC when MR16 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
18	MR16IE	Enable generating an interrupt based on CM[2:0] when MR16 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
17	MR15STOP	Stop MR15: TC and PC will stop and CEN bit will be cleared if MR15 matches TC.0: Disable.1: Enable.	R/W	0
16	MR15RST	Enable reset TC when MR15 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
15	MR15IE	Enable generating an interrupt based on CM[2:0] when MR15 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
14	MR14STOP	Stop MR14: TC and PC will stop and CEN bit will be cleared if MR14 matches TC. 0: Disable. 1: Enable.	R/W	0
13	MR14RST	Enable reset TC when MR14 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
12	MR14IE	Enable generating an interrupt based on CM[2:0] when MR14 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
11	MR13STOP	Stop MR13: TC and PC will stop and CEN bit will be cleared if MR13 matches TC.0: Disable.1: Enable.	R/W	0
10	MR13RST	Enable reset TC when MR13 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
9	MR13IE	Enable generating an interrupt based on CM[2:0] when MR13 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
8	MR12STOP	Stop MR12: TC and PC will stop and CEN bit will be cleared if MR12 matches TC.	R/W	0

		0: Disable.		
		1: Enable.		
		Enable reset TC when MR12 matches TC.		
7	MR12RST	0: Disable.	R/W	0
		1 [.] Enable		
		* If user set MRxSTOP and MRxRST at the same time system will only		
		handle STOP event		
		Enable generating an interrupt based on CM[2:0] when MR12 matches the		
6	MR12IE	value in the TC	R/W	0
		0: Disable		
		1. Enable		
		Stop MR11: TC and PC will stop and CEN bit will be cleared if MR11		
5	MR11STOP	matches TC	R/W	0
		0: Disable		
		1. Enable		
		Enable reset TC when MR11 matches TC		
4	MR11RST	0. Disable	R/W	0
		1. Enable		
		* If user set MRxSTOP and MRxRST at the same time system will only		
		handle STOP event		
		Enable generating an interrupt based on CM[2:0] when MR11 matches the		
3	MR11IE	value in the TC	R/W	0
		0 [.] Disable		
		1: Enable		
		Stop MR10 ⁻ TC and PC will stop and CEN bit will be cleared if MR10		
2	MR10STOP	matches TC.	R/W	0
		0: Disable.		
		1: Enable		
		Enable reset TC when MR10 matches TC.		
1	MR10RST	0: Disable.	R/W	0
		1: Enable.		
		* If user set MRxSTOP and MRxRST at the same time, system will only		
		handle STOP event.		
		Enable generating an interrupt based on CM[2:0] when MR10 matches the		
0	MR10IE	value in the TC.	R/W	0
		0: Disable.		
		1: Enable.		

6.7.9 CT16Bn Match Control register 3 (CT16Bn_MCTRL3) (n=1)

Address Offset: 0x1C

Bit	Name	Description	Attribute	Reset
31:12	Reserved		R	0
11	MR23STOP	Stop MR23: TC and PC will stop and CEN bit will be cleared if MR23 matches TC 0: Disable 1: Enable.	R/W	0
10	MR23RST	Enable reset TC when MR23 matches TC. 0: Disable. 1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only handle STOP event.	R/W	0
9	MR23IE	Enable generating an interrupt based on CM[2:0] when MR23 matches the value in the TC. 0: Disable. 1: Enable.	R/W	0
8	MR22STOP	Stop MR22: TC and PC will stop and CEN bit will be cleared if MR22 matches TC. 0: Disable. 1: Enable.	R/W	0
7	MR22RST	Enable reset TC when MR22 matches TC.	R/W	0

		0: Disable.		
		1: Enable. * If user set MRxSTOP and MRxRST at the same time, system will only		
		handle STOP event.		
6	MDODIE	Enable generating an interrupt based on CM[2:0] when MR22 matches the	DAM	0
0	IVIRZZIE	value in the TC.	R/VV	0
		U: Disable.		
		Stop MR21: TC and PC will stop and CEN bit will be cleared if MR21		
5	MR21STOP	matches TC.	R/W	0
		0: Disable.		
		1: Enable.		
4	MR21RST	Enable reset TC when MR21 matches TC.	R/M	0
-	MIX2 IIX01	0: Disable.	10/00	U
		* If user set MRxSTOP and MRxRST at the same time system will only		
		handle STOP event.		
2	MD04IE	Enable generating an interrupt based on CM[2:0] when MR21 matches the	DAA	0
3	MR211E	value in the TC.	R/W	0
		0: Disable.		
		I. Elidole. Stop MP20: TC and PC will stop and CEN bit will be cleared if MP20.		
2	MR20STOP	matches TC.	R/W	0
		0: Disable.		
		1: Enable.		
1	MP20PST	Enable reset TC when MR20 matches TC.		0
L. L.	1011/201/01	0: Disable.	1.7.4.4	0
		 Eliable. If user set MRxSTOP and MRxRST at the same time, system will only 		
		handle STOP event.		
•	MDOOLE	Enable generating an interrupt based on CM[2:0] when MR20 matches the	D 44/	0
U	MR20IE	value in the TC.	R/W	U
		0: Disable.		
		T. Enable.		

6.7.10 CT16Bn Match register 0 (CT16Bn_MR0) (n=0)

Address Offset: 0x20

The Match register values are continuously compared to the Timer Counter (TC) value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the CT16Bn_MCTRL register.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	MR[15:0]	Timer counter match value	R/W	0

6.7.11 CT16Bn Match register 0~23 (CT16Bn_MR0~23) (n=1)

MR 0 ~ 23:

Address Offset: 0x20, 0x24, 0x28, 0x2C, 0x30, 0x34, 0x38, 0x3C 0x40, 0x44, 0x48, 0x4C, 0x50, 0x54, 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74, 0x78, 0x7C

The Match register values are continuously compared to the Timer Counter (TC) value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the CT16Bn_MCTRL register.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	MR[15:0]	Timer counter match value	R/W	0

6.7.12 CT16Bn Capture Control register (CT16Bn_CAPCTRL) (n=0)

Address Offset: 0x80

The Capture Control register is used to control whether the Capture register is loaded with the value in the Counter/timer when the capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges.

Note: If Counter mode is selected in the CNTCTRL register, CAPCTRL[2:0] must be programmed as 0x0.

Bit	Name	Description	Attribute	Reset
31:4	Reserved		R	0
3	CAPOEN	Capture 0 function enable bit 0: Disable. 1: Enable. HW switches I/O Configuration directly.	R/W	0
2	CAPOIE	Interrupt on CT16Bn_CAP0 event: a CAP0 load due to a CT16Bn_CAP0 event will generate an interrupt. 0: Disable. 1: Enable.	R/W	0
1	CAP0FE	Capture on CT16Bn_CAP0 falling edge: a sequence of 1 then 0 on CT16Bn_CAP0 will cause CAP0 to be loaded with the contents of TC. 0: Disable. 1: Enable.	R/W	0
0	CAP0RE	Capture on CT16Bn_CAP0 rising edge: a sequence of 0 then 1 on CT16Bn_CAP0 will cause CAP0 to be loaded with the contents of TC. 0: Disable. 1: Enable.	R/W	0

6.7.13 CT16Bn Capture 0 register (CT16Bn_CAP0) (n=0)

Address Offset: 0x84

Each Capture register is associated with a device pin and may be loaded with the counter/timer value when a specified event occurs on that pin. The settings in the Capture Control register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	CAP0[15:0]	Timer counter capture value.	R	0

6.7.14 CT16Bn External Match register (CT16Bn_EM)(n=1)

Address Offset: 0x88

The External Match register provides status of CT16Bn_PWM [22:0]. If the match outputs are configured as PWM output, the function of the external match registers is determined by the <u>PWM rules</u>.

Bit	Name	Description	Attribute	Reset
31:23	Reserved		R	0
22	EM22	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM22 output high or Low.	R/W	0
21	EM21	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM21 output high or Low.	R/W	0
20	EM20	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM20 output high or Low.	R/W	0
19	EM19	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM19 output high or Low.	R/W	0
18	EM18	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM18 output high or Low.	R/W	0
17	EM17	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM17 output high or Low.	R/W	0
16	EM16	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM16 output high or Low.	R/W	0
15	EM15	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM15 output high or Low.	R/W	0
14	EM14	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM14 output high or Low.	R/W	0

			\backslash		
--	--	--	--------------	--	--

		52- B u Con	iex-mo micro-	Comfoner
13	EM13	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM13 output high or Low.	R/W	0
12	EM12	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM12 output high or Low.	R/W	0
11	EM11	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM11 output high or Low.	R/W	0
10	EM10	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM10 output high or Low.	R/W	0
9	EM9	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM9 output high or Low.	R/W	0
8	EM8	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM8 output high or Low.	R/W	0
7	EM7	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM7 output high or Low.	R/W	0
6	EM6	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM6 output high or Low.	R/W	0
5	EM5	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM5 output high or Low.	R/W	0
4	EM4	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM4 output high or Low.	R/W	0
3	EM3	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM3 output high or Low.	R/W	0
2	EM2	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM2 output high or Low.	R/W	0
1	EM1	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM1 output high or Low.	R/W	0
0	EM0	When FW write this bit 1/0, MCU will drive the state of CT16Bn_PWM0 output high or Low.	R/W	0

6.7.15 CT16Bn External Match Control register (CT16Bn_EMC)(n=1)

Address Offset: 0x8C

The External Match Control register provides control of CT16Bn_PWM [22:0]. If the match outputs are configured as PWM output, the function of the external match registers is determined by the <u>PWM rules</u>.

Bit	Name	Description	Attribute	Reset
31:30	EMC15[1:0]	Determines the functionality of CT16Bn_PWM15. 00: Do Nothing. 01: CT16Bn_PWM15 pin is LOW. 10: CT16Bn_PWM15 pin is HIGH. 11: Toggle CT16Bn_PWM15 pin.	R/W	0
29:28	EMC14[1:0]	Determines the functionality of CT16Bn_PWM14. 00: Do Nothing 01: CT16Bn_PWM14 pin is LOW 10: CT16Bn_PWM14 pin is HIGH. 11: Toggle CT16Bn_PWM14 pin.	R/W	0
27:26	EMC13[1:0]	Determines the functionality of CT16Bn_PWM13. 00: Do Nothing. 01: CT16Bn_PWM13 pin is LOW. 10: CT16Bn_PWM13 pin is HIGH. 11: Toggle CT16Bn_PWM13 pin.	R/W	0
25:24	EMC12[1:0]	Determines the functionality of CT16Bn_PWM12. 00: Do Nothing. 01: CT16Bn_PWM12 pin is LOW. 10: CT16Bn_PWM12 pin is HIGH. 11: Toggle CT16Bn_PWM12 pin.	R/W	0
23:22	EMC11[1:0]	Determines the functionality of CT16Bn_PWM11. 00: Do Nothing. 01: CT16Bn_PWM11 pin is LOW. 10: CT16Bn_PWM11 pin is HIGH. 11: Toggle CT16Bn_PWM11 pin.	R/W	0
21:20	EMC10[1:0]	Determines the functionality of CT16Bn_PWM10 00: Do Nothing.	R/W	0

		01: CT16Bn_PWM10 pin is LOW.		
		10: CT16Bn_PWM10 pin is HIGH.		
		11: Toggle CT16Bn_PWM10 pin.		
19:18	EMC9[1:0]	Determines the functionality of CT16Bn_PWM9.	R/W	0
		00: Do Nothing.		
		01: CT16Bn_PWM9 pin is LOW.		
		10: CT16Bn_PWM9 pin IS HIGH.		
		The Toggle Childen PWW9 pill.		
17:16	EMC8[1:0]	Determines the functionality of CTTOBILEWING.	R/W	0
		01. CT16Bn_PWM8 pin is LOW		
		10: CT16Bn_PWM8 pin is HIGH.		
		11: Toggle CT16Bn PWM8 pin.		
15.14		Determines the functionality of CT16Bn_PWM7.	R/M	0
13.14		00: Do Nothing.	1 \(/ \ V \)	U
		01: CT16Bn_PWM7 pin is LOW.		
		10: CT16Bn_PWM7 pin is HIGH.		
		11: Toggle CT16Bn_PWM7 pin.		
13:12	EMC6[1:0]	Determines the functionality of CT16Bn_PWM6.	R/W	0
		00: Do Nothing.		
		01: CT16Bn_PWW6 pin is LOW.		
		10. CTTODII_FWIND PILLIS FIGH. 11: Toggle CT16Bn_ PW/M6 pin		
44.40		Determines the functionality of CT16Bn_PW/M5	DAA	0
11:10	EMC5[1:0]	00: Do Nothing.	R/W	0
		01: CT16Bn PWM5 pin is LOW.		
		10: CT16Bn PWM5 pin is HIGH.		
		11: Toggle CT16Bn_PWM5 pin.		
9:8	EMC4[1:0]	Determines the functionality of CT16Bn_PWM4.	R/W	0
	- 1 - 1	00: Do Nothing.		
		01: CT16Bn_PWM4 pin is LOW.		
		10: CT16Bn_PWM4 pin IS HIGH.		
		TI. TOggie CTT6DI_PWW4 pin.		
7:6	EMC3[1:0]	00: Do Nothing	R/W	0
		01: CT16Bn_PWM3 pin is LOW		
		10: CT16Bn_PWM3 pin is HIGH.		
		11: Toggle CT16Bn_PWM3 pin.		
5.4	EMC2[1:0]	Determines the functionality of CT16Bn_PWM2.	R/W	0
0.4		00: Do Nothing.	10,00	Ŭ
		01: CT16Bn_PWM2 pin is LOW.		
		10: CT16Bn_PWM2 pin is HIGH.		
		11: Toggie CT16Bn_PWM2 pin.	+	
3:2	EMC1[1:0]	Determines the functionality of C116Bn_PWM1.	R/W	0
		00. Do Notining. 01: CT16Bn DW/M1 nin is LOW		
		10: CT16Bn_PWM1 nin is HIGH		
		11: Togale CT16Bn PWM1.		
1.0		Determines the functionality of CT16Bn_PWM0.		0
1.0		00: Do Nothing.	F\$/ V V	U
		01: CT16Bn_PWM0 pin is LOW.		
		10: CT16Bn_PWM0 pin is HIGH.		
		11: Togale CT16Bn PWM0.		

6.7.16 CT16Bn External Match Control register 2(CT16Bn_EMC2)(n=1)

Address Offset: 0x90

The External Match Control register 2 provides control of CT16Bn_PWM [22:0]. If the match outputs are configured as PWM output, the function of the external match registers is determined by the <u>PWM rules</u>.

31:13 Reserved R	
	0
13:12 EMC22[1:0] Determines the functionality of CT16Bn_PWM22. R/W	0

00: Do Nothing. 01: CT16Bn_PWM22 pin is LOW. 10: CT16Bn_PWM22 pin is HIGH. 11: Toggle CT16Bn_PWM22 pin. R/W 0 11:10 EMC21[1:0] Determines the functionality of CT16Bn_PWM21. 00: Do Nothing. 01: CT16Bn_PWM21 pin is LOW. 10: CT16Bn_PWM21 pin is HIGH. 11: Toggle CT16Bn_PWM21 pin. R/W 0 9:8 EMC20[1:0] Determines the functionality of CT16Bn_PWM20 00: Do Nothing. 01: CT16Bn_PWM20 pin is LOW. 10: CT16Bn_PWM20 pin is HIGH. 11: Toggle CT16Bn_PWM20 pin. R/W 0 7:6 EMC19[1:0] Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin. R/W 0 5:4 EMC18[1:0] Determines the functionality of CT16Bn_PWM18. 01: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin. R/W 0 3:2 EMC17[1:0] Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM18 pin. R/W 0 1:0 EMC16[1:0] Determines the functionality of CT16Bn_PWM17. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pi					
Image: 101: CT16Bn_PWM22 pin is LOW. 10: CT16Bn_PWM22 pin. Image: 100 multiple state s			00: Do Nothing.		
Image: Instant Section 2016 Image: Instant Section 2017 Image: Instant Section 2017 <t< th=""><th></th><th></th><th>01: CT16Bn_PWM22 pin is LOW.</th><th></th><th></th></t<>			01: CT16Bn_PWM22 pin is LOW.		
Image: Second			10: CT16Bn PWM22 pin is HIGH.		
11:10EMC21[1:0]Determines the functionality of CT16Bn_PWM21. 00: Do Nothing. 01: CT16Bn_PWM21 pin is LOW. 10: CT16Bn_PWM21 pin is HIGH. 11: Toggle CT16Bn_PWM21 pin.R/W09:8EMC20[1:0]Determines the functionality of CT16Bn_PWM20 00: Do Nothing. 01: CT16Bn_PWM20 pin is HIGH. 11: Toggle CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W0			11: Toggle CT16Bn_PWM22 pin.		
Inite Link Lifting 00: Do Nothing, 01: CT16Bn_PVWM21 pin is LOW. 10: CT16Bn_PVMM21 pin is HIGH. 11: Toggle CT16Bn_PVM21 pin. N/V 0 9:8 EMC20[1:0] Determines the functionality of CT16Bn_PVWM20 00: Do Nothing, 01: CT16Bn_PVM20 pin is LOW. 10: CT16Bn_PVM20 pin. R/W 0 7:6 EMC19[1:0] Determines the functionality of CT16Bn_PVM19. 00: Do Nothing, 01: CT16Bn_PVM120 pin. R/W 0 7:6 EMC19[1:0] Determines the functionality of CT16Bn_PVM19. 00: Do Nothing, 01: CT16Bn_PVM19 pin is LOW. 10: CT16Bn_PVM19 pin is HIGH. 11: Toggle CT16Bn_PVM19 pin. R/W 0 5:4 EMC18[1:0] Determines the functionality of CT16Bn_PVM18. 01: CT16Bn_PVM18 pin is LOW. 10: CT16Bn_PVM18 pin is LOW. 10: CT16Bn_PVM18 pin is LOW. 10: CT16Bn_PVM18 pin is LOW. 10: CT16Bn_PVM17 pin is LOW. 10: CT16Bn_PVM17 pin is LOW. 10: CT16Bn_PVM17 pin is LOW. 10: CT16Bn_PVM17 pin is HIGH. 11: Toggle CT16Bn_PVM17 pin. R/W 0 1:0 EMC16[1:0] Determines the functionality of CT16Bn_PVM16. 01: CT16Bn_PVM17 pin is HIGH. 11: Toggle CT16Bn_PVM17 pin. R/W 0	11.10	EMC21[1:0]	Determines the functionality of CT16Bn_PWM21.	R/W	0
01: CT16Bn_PWM21 pin is LOW. 10: CT16Bn_PWM21 pin is HIGH. 11: Toggle CT16Bn_PWM21 pin.R/W9:8EMC20[1:0]Determines the functionality of CT16Bn_PWM20 00: Do Nothing. 01: CT16Bn_PWM20 pin is LOW. 10: CT16Bn_PWM20 pin is HGH. 11: Toggle CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W0			00: Do Nothing.	10,00	Ū
10: CT16Bn_PWM21 pin is HIGH. 11: Toggle CT16Bn_PWM21 pin.R/W9:8EMC20[1:0]Determines the functionality of CT16Bn_PWM20 O: Do Nothing. 01: CT16Bn_PWM20 pin is LOW. 10: CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin pin hIGH. 11: Toggle CT16Bn_PWM16 pin pin h			01: CT16Bn PWM21 pin is LOW.		
9:8EMC20[1:0]Determines the functionality of CT16Bn_PWM20 00: Do Nothing. 01: CT16Bn_PWM20 pin is LOW. 10: CT16Bn_PWM20 pin is HIGH. 11: Toggle CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11:			10: CT16Bn_PWM21 pin is HIGH.		
9:8EMC20[1:0]Determines the functionality of CT16Bn_PWM20 00: Do Nothing. 01: CT16Bn_PWM20 pin is LOW. 10: CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM19 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is LOW. 11: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 11: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W0			11: Togale CT16Bn PWM21 nin		
9:8 EMC20[1:0] Determines the functionality of C110Bn_PWM20 R/W 0 7:6 EMC19[1:0] Determines the functionality of C116Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM20 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin. R/W 0 7:6 EMC19[1:0] Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin. R/W 0 5:4 EMC18[1:0] Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin. R/W 0 3:2 EMC17[1:0] Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. R/W 0		=140,0074,01	Determines the functionality of CT16Bn_DW/M20	5.44	-
00: Do Nothing. 01: CT16Bn_PWM20 pin is LOW. 10: CT16Bn_PWM20 pin.R/W7:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 11: Torgle CT16Bn_PWM16 pin is LOW. 11: CT16Bn_PWM16 pin is LOW. <b< th=""><th>9:8</th><th>EMC20[1:0]</th><th>00: Do Nothing</th><th>R/W</th><th>0</th></b<>	9:8	EMC20[1:0]	00: Do Nothing	R/W	0
TicleDifferenceDifference10: C116Bn_PWM20 pin is HIGH. 11: Toggle CT16Bn_PWM20 pin.R/W07:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: T			00. DU NUTITING.		
1:0: C116Bn_PWM20 pin.R/W7:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W5:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: CT16Bn_PWM16 pin is HIGH.R/W0			UT: CT16Bn_PVVIVI20 pin is LUOU.		
7:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 00: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Torgle CT16Bn_PWM16 pin is HIGH.			10: CT16Bn_PWM20 pin is HIGH.		
7:6EMC19[1:0]Determines the functionality of CT16Bn_PWM19. 0: Do Nothing. 01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W05:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin pin pin pin pin			11: Toggle CT16Bn_PWM20 pin.		
Index and a sector of a sector of the sect	7:6	EMC19[1:0]	Determines the functionality of CT16Bn_PWM19.	R/W	0
01: CT16Bn_PWM19 pin is LOW. 10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W5:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin pin pin HIGH. 11: Toggle CT16Bn_PWM16 pin pi			00: Do Nothing.		, , , , , , , , , , , , , , , , , , ,
10: CT16Bn_PWM19 pin is HIGH. 11: Toggle CT16Bn_PWM19 pin.R/W5:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin.R/W0			01: CT16Bn_PWM19 pin is LOW.		
Image: Signed state11: Toggle CT16Bn_PWM19 pin.Image: Signed state5:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: CT16Bn_PWM16 pin is HIGH. 11: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH.R/W			10: CT16Bn_PWM19 pin is HIGH.		
5:4EMC18[1:0]Determines the functionality of CT16Bn_PWM18. 00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin pin pin HIGH. 11: Toggle CT16Bn_PWM16 pin pin pin pin pin pin pin			11: Toggle CT16Bn_PWM19 pin.		
3.4EMC16[1:0]00: Do Nothing. 01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.N/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pinR/W0	5.1	EMC19[1:0]	Determines the functionality of CT16Bn_PWM18.		0
01: CT16Bn_PWM18 pin is LOW. 10: CT16Bn_PWM18 pin is HIGH. 11: Toggle CT16Bn_PWM18 pin.Image: CT16Bn_PWM17 pin PWM18 pin.Comparison of CT16Bn_PWM17. OO: Do Nothing. O1: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. O0: Do Nothing. O1: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 11: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pinR/W0	5.4		00: Do Nothing.	r\/ ¥ ¥	0
3:2EMC17[1:0]Determines the functionality of CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is LOW. 11: Toggle CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pinR/W0			01: CT16Bn PWM18 pin is LOW		
3:2EMC17[1:0]Determines the functionality of CT16Bn_PWM18 pin.R/W03:2EMC17[1:0]Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin.R/W01:0EMC16[1:0]Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pinR/W0			10: CT16Bn_PWM18 nin is HIGH		
3:2 EMC17[1:0] Determines the functionality of CT16Bn_PWM17. 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin. R/W 0 1:0 EMC16[1:0] Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin R/W 0			11: Toggle CT16Bn_PW/M18 pin		
3:2 EMC17[1:0] Determines the functionality of C110Bh_FWM17. R/W 0 00: Do Nothing. 01: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bh_PWM17 pin. 1:0 EMC16[1:0] Determines the functionality of CT16Bh_PWM16. R/W 0 0: Do Nothing. 0: Do Nothing. 0: Do Nothing. R/W 0 1:0 EMC16[1:0] Determines the functionality of CT16Bh_PWM16. R/W 0 0: Do Nothing. 01: CT16Bh_PWM16 pin is LOW. 10: CT16Bh_PWM16 pin is HIGH. 11: Toggle CT16Bh_PWM16 pin R/W 0			Determines the functionality of CT16Bn_PWM17	544	•
1:0 EMC16[1:0] 0: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin. R/W 0 1:0 EMC16[1:0] Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin R/W 0	3:2	EMC17[1:0]	00: Do Nothing	R/W	0
10: CT16Bn_PWM17 pin is LOW. 10: CT16Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin. 1:0 EMC16[1:0] Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin			00. DU NUTITING.		
10: C116Bn_PWM17 pin is HIGH. 11: Toggle CT16Bn_PWM17 pin. 1:0 EMC16[1:0] Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin			UT: CTT6Bn_PVVIVIT7 pin is LUOU.		
11: Toggle CT16Bn_PWM17 pin. 11: Toggle CT16Bn_PWM17 pin. Determines the functionality of CT16Bn_PWM16. 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin					
1:0 EMC16[1:0] Determines the functionality of CT16Bn_PWM16. R/W 0 00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 01: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin			11: Toggie CT16Bn_PWM17 pin.		
00: Do Nothing. 01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin	1:0	EMC16[1:0]	Determines the functionality of CT16Bn_PWM16.	R/W	0
01: CT16Bn_PWM16 pin is LOW. 10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin			00: Do Nothing.		
10: CT16Bn_PWM16 pin is HIGH. 11: Toggle CT16Bn_PWM16 pin			01: CT16Bn_PWM16 pin is LOW.		
11: Toggle CT16Bn, PWM16 pin			10: CT16Bn_PWM16 pin is HIGH.		
			11: Toggle CT16Bn_PWM16 pin.		

6.7.17 CT16Bn PWM Control register (CT16Bn_PWMCTRL) (n=1)

Address Offset: 0x94

The PWM Control register is used to configure the match outputs as PWM outputs. Each match output can be in-dependently set to perform either as PWM output or as match output whose function is controlled by <u>CT16Bn EM</u> register.

For each timer, a maximum of 4 single edge controlled PWM outputs can be selected on the CT16Bn_PWMCTRL [3:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Bit	Name	Description	Attribute	Reset
31:30	PWM15MODE[1:0]	 PWM15 output. 00: PWM mode 1. PWM15 is 0 when TC<mr15 during="" li="" period.<="" up-counting=""> 01: PWM mode 2. PWM1 5 is 1 when TC<mr15 during="" li="" period.<="" up-counting=""> 10: PWM15 is forced to 0. 11: PWM15 is forced to 1. </mr15></mr15>	R/W	0
29:28	PWM14MODE[1:0]	PWM14 output. 00: PWM mode 1. PWM14 is 0 when TC <mr14 during="" period.<br="" up-counting="">01: PWM mode 2. PWM14 is 1 when TC<mr14 during="" period.<br="" up-counting="">10: PWM14 is forced to 0.</mr14></mr14>	R/W	0

SN32F260 Series

32-Bit Cortex-M0 Micro-Controller

		11: PWM14 is forced to 1.		
27:26	PWM13MODE[1:0]	PWM13 output.	R/W	0
		PWM13 is 0 when TC <mr13 during="" period.<="" th="" up-counting=""><th></th><th></th></mr13>		
		01: PWM mode 2.		
		PWM13 is 1 when TC <mr13 during="" period.<="" th="" up-counting=""><th></th><th></th></mr13>		
		11: PWM13 is forced to 1.		
25:24	PWM12MODE[1:0]	PWM12 output.	R/W	0
		PWM12 is 0 when TC <mr12 during="" period.<="" th="" up-counting=""><th></th><th></th></mr12>		
		01: PWM mode 2.		
		PWM12 is 1 when TC <mr12 during="" period.<="" th="" up-counting=""><th></th><th></th></mr12>		
		11: PWM12 is forced to 1.		
23:22	PWM11MODE[1:0]	PWM11 output.	R/W	0
		PWM11 is 0 when TC <mr11 during="" period.<="" th="" up-counting=""><th></th><th></th></mr11>		
		01: PWM mode 2.		
		10: PWM11 is forced to 0.		
		11: PWM11 is forced to 1.		
21:20	PWM10MODE[1:0]	PWM10 output. 00: PWM mode 1	R/W	0
		PWM10 is 0 when TC <mr10 during="" period.<="" th="" up-counting=""><th></th><th></th></mr10>		
		01: PWM mode 2.		
		10: PWM10 is forced to 0.		
		11: PWM10 is forced to 1.		
19:18	PWM9MODE[1:0]	00: PWM mode 1.	R/W	0
		PWM9 is 0 when TC <mr9 during="" period.<="" th="" up-counting=""><th></th><th></th></mr9>		
		01: PWM mode 2. PWM9 is 1 when TC-ZMR9 during Un-counting period		
		10: PWM9 is forced to 0.		
		11: PWM9 is forced to 1.		
17:16	PWM8MODE[1:0]	00: PWM mode 1.	R/W	0
		PWM8 is 0 when TC <mr8 during="" period.<="" th="" up-counting=""><th></th><th></th></mr8>		
		PWM8 is 1 when TC <mr8 during="" period.<="" th="" up-counting=""><th></th><th></th></mr8>		
		10: PWM8 is forced to 0.		
		PWM8 is forced to 1.		
15:14	PWM/MODE[1:0]	00: PWM mode 1.	R/W	0
		PWM7 is 0 when TC <mr7 during="" period.<="" th="" up-counting=""><th></th><th></th></mr7>		
		PWM7 is 1 when TC <mr7 during="" period.<="" th="" up-counting=""><th></th><th></th></mr7>		
		10: PWM7 is forced to 0.		
12.12		PWM6 output.		0
13.12		00: PWM mode 1.	Γ./ ٧ V	U
		01: PWM mode 2.		
		PWM6 is 1 when TC <mr6 during="" period.<="" th="" up-counting=""><th></th><th></th></mr6>		
		11: PWM6 is forced to 0.		
11:10	PWM5MODF[1:0]	PWM5 output.	R/W	0
		00: PWM mode 1. PWM5 is 0 when TC <mr5 during="" period.<="" th="" up-counting=""><th></th><th>Ŭ</th></mr5>		Ŭ
		01: PWM mode 2.		
		PWM5 is 1 when TC <mr5 during="" period.<="" th="" up-counting=""><th></th><th></th></mr5>		
		11: PWM5 is forced to 1.		
9:8	PWM4MODE[1:0]	PWM4output.	R/W	0
		PWM4 is 0 when TC <mr4 during="" period.<="" th="" up-counting=""><th></th><th></th></mr4>		
		01: PWM mode 2.		

SN32F260 Series 32-Bit Cortex-M0 Micro-Controller

		PWM4 is 1 when TC <mr4 during="" period.<="" th="" up-counting=""><th></th><th></th></mr4>		
		10: PWM4 is forced to 0.		
		11: PWM4 is forced to 1.		
7.6		PWM3 output.		0
7.0		00: PWM mode 1.		0
		PWM3 is 0 when TC <mr2 during="" period.<="" th="" up-counting=""><th></th><th></th></mr2>		
		01: PWM mode 2.		
		PWM3 is 1 when TC <mr3 during="" period.<="" th="" up-counting=""><th></th><th></th></mr3>		
		10: PWM3 is forced to 0.		
		11: PWM3 is forced to 1.		
5:4	PWM2MODE[1:0]	PWM2 output.	R/W	0
••••		00: PWM mode 1.		Ŭ
		PWM2 is 0 when 1 C <mr2 during="" period.<="" th="" up-counting=""><th></th><th></th></mr2>		
		U1: PVVM mode 2.		
		10. DWM2 is forced to 0.		
		10. FWIMZ is forced to 1		
		DW/M1 output		
3:2	PWM1MODE[1:0]	100 PWM mode 1	R/W	0
		PWM1 is 0 when TC <mr1 during="" period<="" th="" un-counting=""><th></th><th></th></mr1>		
		01: PWM mode 2		
		PWM1 is 1 when TC <mr1 during="" period.<="" th="" up-counting=""><th></th><th></th></mr1>		
		10: PWM1 is forced to 0.		
		11: PWM1 is forced to 1.		
4-0		PWM0 output.		0
1:0	PWW000DE[1:0]	00: PWM mode 1.	R/W	0
		PWM0 is 0 when TC <mr0 during="" period.<="" th="" up-counting=""><th></th><th></th></mr0>		
		01: PWM mode 2.		
		PWM0 is 1 when TC <mr0 during="" period.<="" th="" up-counting=""><th></th><th></th></mr0>		
		10: PWM0 is forced to 0.		
		11: PWM0 is forced to 1.		

6.7.18 CT16Bn PWM Control register 2 (CT16Bn_PWMCTRL2) (n=1)

Address Offset: 0x98

The PWM Control register is used to configure the match outputs as PWM outputs. Each match output can be in-dependently set to perform either as PWM output or as match output whose function is controlled by <u>CT16Bn_EM</u> register.

For each timer, a maximum of 4 single edge controlled PWM outputs can be selected on the CT16Bn_PWMCTRL [3:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Bit	Name	Description	Attribute	Reset
31:14	Reserved		R	0
13:12	PWM22MODE[1:0]	 PWM22 output. 00: PWM mode 1. PWM22 is 0 when TC<mr22 during="" li="" period.<="" up-counting=""> 01: PWM mode 2. PWM22 is 1 when TC<mr22 during="" li="" period.<="" up-counting=""> 10: PWM22 is forced to 0. 11: PWM22 is forced to 1. </mr22></mr22>	R/W	0
11:10	PWM21MODE[1:0]	 PWM21 output. 00: PWM mode 1. PWM21 is 0 when TC<mr21 during="" li="" period.<="" up-counting=""> 01: PWM mode 2. PWM21 is 1 when TC<mr21 during="" li="" period.<="" up-counting=""> 10: PWM21 is forced to 0. 11: PWM21 is forced to 1. </mr21></mr21>	R/W	0

SN32F260 Series 32-Bit Cortex-M0 Micro-Controller

9.8		PWM20 output.	RW	0
5.0		00: PWM mode 1.	1.7.4.4	U
		PWM20 is 0 when TC <mr20 during="" period.<="" th="" up-counting=""><th></th><th></th></mr20>		
		01: PWM mode 2.		
		PWM20 is 1 when TC <mr20 during="" period.<="" th="" up-counting=""><th></th><th></th></mr20>		
		10: PWM20 is forced to 0.		
		11: PWM20 is forced to 1.		
7:6	PWM19MODF[1:0]	PWM19 output.	R/W	0
		00: PWM mode 1.		Ŭ
		PWM19 is 0 when TC <mr19 during="" period.<="" th="" up-counting=""><th></th><th></th></mr19>		
		Priviting is 1 when TO <ivik19 during="" period.<="" th="" up-counting=""><th></th><th></th></ivik19>		
		10: PWIM19 IS FORCED TO U.		
5:4	PWM18MODE[1:0]	PWW18 Output.	R/W	0
		UC: PVVM mode 1.		
		PWW18 IS 0 when TC <wr18 during="" period.<="" th="" up-counting=""><th></th><th></th></wr18>		
		DWM19 is 1 when TC MP19 during Lip counting period		
		10: DWM18 is forced to 0		
		11: DW/M18 is forced to 1		
3:2	PWM17MODE[1:0]	00: PWM mode 1	R/W	0
		PWM17 is 0 when TC <mr17 during="" lin-counting="" period<="" th=""><th></th><th></th></mr17>		
		01: PW/M mode 2		
		PWM17 is 1 when TC		
		10: PWM17 is forced to 0.		
		11: PWM17 is forced to 1.		
		PWM16 output.		
1:0	PWM16MODE[1:0]	00: PWM mode 1.	R/W	0
		PWM16 is 0 when TC <mr16 during="" period.<="" th="" up-counting=""><th></th><th></th></mr16>		
		01: PWM mode 2.		
		PWM16 is 1 when TC <mr16 during="" period.<="" th="" up-counting=""><th></th><th></th></mr16>		
		10: PWM16 is forced to 0.		
		11: PWM16 is forced to 1.		

6.7.19 CT16Bn PWM Enable register (CT16Bn_PWMENB) (n=1)

Address Offset: 0x9C

The PWM Control register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by <u>CT16Bn_EM</u> register.

For each timer, a maximum of 4 single edge controlled PWM outputs can be selected on the CT16Bn_PWMCTRL[3:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Bit	Name	Description	Attribute	Reset
31:23	Reserved		R	0
22	PWM22EN	PWM22 enable. 0: CT16Bn_PWM22 is controlled by EM22. 1: PWM mode is enabled for CT16Bn_PWM22.	R/W	0
21	PWM21EN	PWM21 enable. 0: CT16Bn_PWM21 is controlled by EM21. 1: PWM mode is enabled for CT16Bn_PWM21.	R/W	0
20	PWM20EN	PWM20 enable. 0: CT16Bn_PWM20 is controlled by EM20. 1: PWM mode is enabled for CT16Bn_PWM20.	R/W	0
19	PWM19EN	PWM19 enable. 0: CT16Bn_PWM19 is controlled by EM19. 1: PWM mode is enabled for CT16Bn_PWM19.	R/W	0

		52-0	a conex-mo maro-	connoner
18	PWM18EN	PWM18 enable. 0: CT16Bn_PWM18 is controlled by EM18. 1: PWM mode is enabled for CT16Bn PWM18.	R/W	0
17	PWM17EN	PWM17 enable. 0: CT16Bn_PWM17 is controlled by EM17. 1: PWM mode is enabled for CT16Bn_PWM17.	R/W	0
16	PWM16EN	PWM16 enable. 0: CT16Bn_PWM16 is controlled by EM16. 1: PWM mode is enabled for CT16Bn_PWM16.	R/W	0
15	PWM15EN	PWM15 enable. 0: CT16Bn_PWM15 is controlled by EM15. 1: PWM mode is enabled for CT16Bn_PWM15.	R/W	0
14	PWM14EN	PWM14 enable. 0: CT16Bn_PWM14 is controlled by EM14. 1: PWM mode is enabled for CT16Bn_PWM14.	R/W	0
13	PWM13EN	PWM13 enable. 0: CT16Bn_PWM13 is controlled by EM13. 1: PWM mode is enabled for CT16Bn_PWM13.	R/W	0
12	PWM12EN	PWM12 enable. 0: CT16Bn_PWM12 is controlled by EM12. 1: PWM mode is enabled for CT16Bn_PWM12.	R/W	0
11	PWM11EN	PWM11 enable. 0: CT16Bn_PWM11 is controlled by EM11. 1: PWM mode is enabled for CT16Bn_PWM11.	R/W	0
10	PWM10EN	PWM10 enable. 0: CT16Bn_PWM10 is controlled by EM10. 1: PWM mode is enabled for CT16Bn_PWM10.	R/W	0
9	PWM9EN	PWM9 enable. 0: CT16Bn_PWM9 is controlled by EM9. 1: PWM mode is enabled for CT16Bn_PWM9.	R/W	0
8	PWM8EN	PWM8 enable. 0: CT16Bn_PWM8 is controlled by EM8. 1: PWM mode is enabled for CT16Bn_PWM8.	R/W	0
7	PWM7EN	PWM7 enable. 0: CT16Bn_PWM7 is controlled by EM7. 1: PWM mode is enabled for CT16Bn_PWM7.	R/W	0
6	PWM6EN	PWM6 enable. 0: CT16Bn_PWM6 is controlled by EM6. 1: PWM mode is enabled for CT16Bn_PWM6.	R/W	0
5	PWM5EN	PWM5 enable. 0: CT16Bn_PWM5 is controlled by EM5. 1: PWM mode is enabled for CT16Bn_PWM5.	R/W	0
4	PWM4EN	PWM4 enable. 0: CT16Bn_PWM4 is controlled by EM4. 1: PWM mode is enabled for CT16Bn_PWM4.	R/W	0
3	PWM3EN	PWM3 enable. 0: CT16Bn_PWM3 is controlled by EM3. 1: PWM mode is enabled for CT16Bn_PWM3.	R/W	0
2	PWM2EN	PWM2 enable. 0: CT16Bn_PWM2 is controlled by EM2. 1: PWM mode is enabled for CT16Bn_PWM2.	R/W	0
1	PWM1EN	PWM1 enable. 0: CT16Bn_PWM1 is controlled by EM1. 1: PWM mode is enabled for CT16Bn_PWM1.	R/W	0
0	PWM0EN	PWM0 enable. 0: CT16Bn_PWM0 is controlled by EM0. 1: PWM mode is enabled for CT16Bn_PWM0.	R/W	0

6.7.20 PWM IO Enable register (CT16Bn_PWMIOENB) (n=1)

Address Offset: 0xA0

The PWM Control register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by <u>CT16Bn_EM</u>

register.

For each timer, a maximum of 4 single edge controlled PWM outputs can be selected on the CT16Bn_PWMCTRL[3:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Bit	Name	Description	Attribute	Reset
31:23	Reserved		R	0
22	PWM22IOEN	CT16Bn_PWM22/GPIO selection bit. 0: CT16Bn_PWM22 pin act as GPIO. 1: CT16Bn_PWM22 pin act as match output, and output signal depends on PWM22EN bit.	R/W	0
21	PWM21IOEN	CT16Bn_PWM21/GPIO selection bit. 0: CT16Bn_PWM21 pin act as GPIO. 1: CT16Bn_PWM21 pin act as match output, and output signal depends on PWM21EN bit.	R/W	0
20	PWM20IOEN	CT16Bn_PWM20/GPIO selection bit. 0: CT16Bn_PWM20 pin act as GPIO. 1: CT16Bn_PWM20 pin act as match output, and output signal depends on PWM20EN bit.	R/W	0
19	PWM19IOEN	CT16Bn_PWM19/GPIO selection bit. 0: CT16Bn_PWM19 pin act as GPIO. 1: CT16Bn_PWM19 pin act as match output, and output signal depends on PWM19EN bit.	R/W	0
18	PWM18IOEN	CT16Bn_PWM18/GPIO selection bit. 0: CT16Bn_PWM18 pin act as GPIO. 1: CT16Bn_PWM18 pin act as match output, and output signal depends on PWM18EN bit.	R/W	0
17	PWM17IOEN	CT16Bn_PWM17/GPIO selection bit. 0: CT16Bn_PWM17 pin act as GPIO. 1: CT16Bn_PWM17 pin act as match output, and output signal depends on PWM17EN bit.	R/W	0
16	PWM16IOEN	CT16Bn_PWM16/GPIO selection bit. 0: CT16Bn_PWM16 pin act as GPIO. 1: CT16Bn_PWM16 pin act as match output, and output signal depends on PWM16EN bit	R/W	0
15	PWM15IOEN	CT16Bn_PWM15/GPIO selection bit. 0: CT16Bn_PWM15 pin act as GPIO. 1: CT16Bn_PWM15 pin act as match output, and output signal depends on PWM15EN bit.	R/W	0
14	PWM14IOEN	CT16Bn_PWM14/GPIO selection bit. 0: CT16Bn_PWM14 pin act as GPIO. 1: CT16Bn_PWM14 pin act as match output, and output signal depends on PWM14EN bit.	R/W	0
13	PWM13IOEN	CT16Bn_PWM13/GPIO selection bit. 0: CT16Bn_PWM13 pin act as GPIO. 1: CT16Bn_PWM13 pin act as match output, and output signal depends on PWM13EN bit.	R/W	0
12	PWM12IOEN	CT16Bn_PWM12/GPIO selection bit. 0: CT16Bn_PWM12 pin act as GPIO. 1: CT16Bn_PWM12 pin act as match output, and output signal depends on PWM12EN bit.	R/W	0
11	PWM11IOEN	CT16Bn_PWM11/GPIO selection bit. 0: CT16Bn_PWM11 pin act as GPIO. 1: CT16Bn_PWM11 pin act as match output, and output signal depends on PWM11EN bit	R/W	0
10	PWM10IOEN	C116Bn_PWM10/GPIO selection bit. 0: CT16Bn_PWM10 pin act as GPIO. 1: CT16Bn_PWM10 pin act as match output, and output signal depends on PWM10EN bit.	R/W	0
9	PWM9IOEN	CT16Bn_PWM9/GPIO selection bit. 0: CT16Bn_PWM9 pin act as GPIO. 1: CT16Bn_PWM9 pin act as match output, and output signal depends on PWM9EN bit	R/W	0

	1			
8	PWM8IOEN	CT16Bn_PWM8/GPIO selection bit. 0: CT16Bn_PWM8 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM8 pin act as match output, and output signal depends on PWM8EN bit.		
7	PWM7IOEN	CT16Bn_PWM7/GPIO selection bit. 0: CT16Bn_PWM7 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM7 pin act as match output, and output signal depends on PWM7EN bit.		
6	PWM6IOEN	CT16Bn_PWM6/GPIO selection bit. 0: CT16Bn_PWM6 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM6 pin act as match output, and output signal depends on PWM6EN bit		
5	PWM5IOEN	CT16Bn_PWM5/GPIO selection bit. 0: CT16Bn_PWM5 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM5 pin act as match output, and output signal depends on PWM5EN bit.		
4	PWM4IOEN	CT16Bn_PWM4/GPIO selection bit. 0: CT16Bn_PWM4 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM4 pin act as match output, and output signal depends on PWM4EN bit		
3	PWM3IOEN	CT16Bn_PWM3/GPIO selection bit. 0: CT16Bn_PWM3 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM3 pin act as match output, and output signal depends on PWM3EN bit.		
2	PWM2IOEN	CT16Bn_PWM2/GPIO selection bit. 0: CT16Bn_PWM2 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM2 pin act as match output, and output signal depends		
1	PWM1IOEN	CT16Bn_PWM1/GPIO selection bit.	R/W	0
		1: CT16Bn_PWM1 pin act as GPIO. 1: CT16Bn_PWM1 pin act as match output, and output signal depends		
		on PWM1EN bit.		
0	PWM0IOEN	CT16Bn_PWM0/GPIO selection bit. 0: CT16Bn_PWM0 pin act as GPIO.	R/W	0
		1: CT16Bn_PWM0 pin act as match output, and output signal depends on PWM0EN bit.		

6.7.21 CT16Bn Timer Raw Interrupt Status register (CT16Bn_RIS) (n=0, 1)

Address Offset: 0xA4

This register indicates the raw status for Timer/PWM interrupts. A Timer/PWM interrupt is sent to the interrupt controller if the corresponding bit in the CT16Bn_IE register is set.

Bit	Name	Description	Attribute	Reset
31:25	Reserved		R	0
24	CAP0IF	Interrupt flag for capture channel 0. 0: No interrupt on CAP0. 1: Interrupt requirements met on CAP0.	R	0
23	MR23IF	Interrupt flag for match channel 23. 0: No interrupt on match channel 23. 1: Interrupt requirements met on match channel 23.	R	0
22	MR22IF	Interrupt flag for match channel 22. 0: No interrupt on match channel 22. 1: Interrupt requirements met on match channel 22.	R	0
21	MR21IF	Interrupt flag for match channel 21. 0: No interrupt on match channel 21. 1: Interrupt requirements met on match channel 21.	R	0
20	MR20IF	Interrupt flag for match channel 20. 0: No interrupt on match channel 20. 1: Interrupt requirements met on match channel 20.	R	0
19	MR19IF	Interrupt flag for match channel 19. 0: No interrupt on match channel 19.	R	0

SN32F260 Series

32-Bit Cortex-M0 Micro-Controller

		1: Interrupt requirements met on match channel 19.		
18	MR18IF	Interrupt flag for match channel 18.	R	0
10	WITCHON	0: No interrupt on match channel 18.		U
		1: Interrupt requirements met on match channel 18.		
17	MR17IF	Interrupt flag for match channel 17.	R	0
		0: No interrupt on match channel 17		-
		1: Interrupt requirements met on match channel 17.		
16	MR16IF	Interrupt flag for match channel 16.	R	0
		0: No interrupt on match channel 16.		
		1: Interrupt requirements met on match channel 16.		
15	MR15IF	Interrupt flag for match channel 15.	R	0
		0: No interrupt on match channel 15.		
		1: Interrupt requirements met on match channel 15.		
14	MR14IF	Interrupt flag for match channel 14.	R	0
		0. No interrupt on match channel 14.		
		Interrupt flag for match channel 12		
13	MR13IF	0: No interrupt on match channel 13	R	0
		1: Interrupt requirements met on match channel 13		
40		Interrupt flag for match channel 12		0
12	MR12IF	0: No interrupt on match channel 12.	ĸ	0
		1: Interrupt requirements met on match channel 12.		
11	MD11IE	Interrupt flag for match channel 11.	D	0
		0: No interrupt on match channel 11.	R.	0
		1: Interrupt requirements met on match channel 11.		
10	MR10IF	Interrupt flag for match channel 10.	R	0
10	WIICTON	0: No interrupt on match channel 10.		U
		1: Interrupt requirements met on match channel 10.		
9	MR9IF	Interrupt flag for match channel 9.	R	0
•		0: No interrupt on match channel 9.		-
		1: Interrupt requirements met on match channel 9.		
8	MR8IF	Interrupt flag for match channel 8.	R	0
		0: No interrupt on match channel 8.		
		1: Interrupt requirements met on match channel 8.		
7	MR7IF	Interrupt hag for match channel 7.	R	0
		1: Interrupt requirements met on match channel 7		
•		Interrupt flag for match channel 6		
6	MR6IF	0. No interrupt on match channel 6	R	0
		1: Interrupt requirements met on match channel 6.		
F	MDEIE	Interrupt flag for match channel 5	D	0
Э	IVIRGIE	0: No interrupt on match channel 5.	ĸ	U
		1: Interrupt requirements met on match channel 1.		
4	MRAIE	Interrupt flag for match channel 4.	P	0
-	101111411	0: No interrupt on match channel 4.		0
		1: Interrupt requirements met on match channel 4.		
3	MR3IF	Interrupt flag for match channel 3.	R	0
•		0: No interrupt on match channel 3.		Ŭ
		1: Interrupt requirements met on match channel 3.		
2	MR2IF	Interrupt flag for match channel 2.	R	0
		0: No interrupt on match channel 2.		
		1: Interrupt requirements met on match channel 2.		
1	MR1IF	Interrupt flag for match channel 1.	R	0
		U: NO INTERPUT ON MATCH CHANNEL 1.		
		1. Interrupt requirements met on match channel 1.		
1	MR0IF	O: No interrupt on match channel 0.	R	0
		0. No interrupt on match channel 0. 1: Interrupt requirements met on match channel 0.		
	1			

6.7.22 CT16Bn Timer Interrupt Clear register (CT16Bn_IC) (n=0,1)

Address Offset: 0xA8

Bit Name Description Attribute Reset

31:25	Reserved		R	0
24	CAPOIC	0: No effect. 1: Clear CAP0IF bit.	W	0
23	MR23IC	0: No effect. 1: Clear MR23IF bit.	W	0
22	MR22IC	0: No effect. 1: Clear MR22IF bit.	W	0
21	MR21IC	0: No effect. 1: Clear MR21IF bit.	W	0
20	MR20IC	0: No effect. 1: Clear MR20IF bit.	W	0
19	MR19IC	0: No effect. 1: Clear MR19IF bit.	W	0
18	MR18IC	0: No effect. 1: Clear MR18IF bit.	W	0
17	MR17IC	0: No effect. 1: Clear MR17IF bit.	W	0
16	MR16IC	0: No effect. 1: Clear MR16IF bit.	W	0
15	MR15IC	0: No effect. 1: Clear MR15IF bit.	W	0
14	MR14IC	0: No effect. 1: Clear MR14IF bit.	W	0
13	MR13IC	0: No effect. 1: Clear MR13IF bit.	W	0
12	MR12IC	0: No effect. 1: Clear MR12IF bit.	W	0
11	MR11IC	0: No effect. 1: Clear MR11IF bit.	W	0
10	MR10IC	0: No effect. 1: Clear MR10IF bit.	W	0
9	MR9IC	0: No effect. 1: Clear MR9IF bit.	W	0
8	MR8IC	0: No effect. 1: Clear MR8IF bit.	W	0
7	MR7IC	0: No effect. 1: Clear MR7IF bit.	W	0
6	MR6IC	0: No effect. 1: Clear MR6IF bit.	W	0
5	MR5IC	0: No effect. 1: Clear MR5IF bit.	W	0
4	MR4IC	0: No effect. 1: Clear MR4IF bit.	W	0
3	MR3IC	0: No effect. 1: Clear MR3IF bit.	W	0
2	MR2IC	0: No effect. 1: Clear MR2IF bit.	W	0
1	MR1IC	0: No effect. 1: Clear MR1IF bit.	W	0
0	MR0IC	0: No effect. 1: Clear MR0IF bit.	W	0

7 WATCHDOG TIMER (WDT)

7.1 OVERVIEW

The purpose of the Watchdog is to reset the MCU within a reasonable amount of time if it enters an erroneous state. When enabled, the Watchdog will generate a system reset or interrupt if the user program fails to "feed" (or reload) the Watchdog within a predetermined amount of time.

The Watchdog consists of a divide by 128 fixed pre-scaler and a 8-bit counter. The clock is fed to the timer via a pre-scaler. The timer decrements when clocked. The minimum value from which the counter decrements is 0x01. Hence the minimum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog interval is ($T_{WDT_PCLK} \times 128 \times 1$) and the maximum Watchdog int

The Watchdog should be used in the following manner:

- 1. Select the clock source for the watchdog timer with WDTCLKSEL register.
- Set the prescale value for the watchdog clock with WDTPRE bits in <u>APB Clock Prescale register 1</u> (<u>SYS1_APBCP1</u>) register.
- 3. Set the Watchdog timer constant reload value in <u>WDT_TC</u> register.
- 4. Enable the Watchdog and setup the Watchdog timer operating mode in <u>WDT_CFG</u> register.
- 5. The Watchdog should be fed again by writing 0x55AA to <u>WDT FEED</u> register before the Watchdog counter underflows to prevent reset or interrupt.

When the watchdog is started by setting the WDTEN in <u>WDT_CFG</u> register, the time constant value is loaded in the watchdog counter and the counter starts counting down. When the Watchdog is in the reset mode and the counter underflows, the CPU will be reset, loading the stack pointer and program counter from the vector table as in the case of external reset. Whenever the value 0x55AA is written in <u>WDT_FEED</u> register, the WDT_TC value is reloaded in the watchdog counter and the watchdog reset or interrupt is prevented.

The watchdog timer block uses two clocks: HCLK and WDT_PCLK. HCLK is used for the AHB accesses to the watchdog registers and is derived from the system clock. The WDT_PCLK is used for the watchdog timer counting. Several clocks can be used as a clock source for WDT_PCLK clock: IHRC, ILRC, and HCLK.

The clock to the watchdog register block can be disabled in <u>AHB Clock Enable register (SYS1_AHBCLKEN)</u> register for power savings.

Watchdog reset or interrupt will occur any time the watchdog is running and has an operating clock source.

7.2 BLOCK DIAGRAM

7.3 WDT REGISTERS

Base Address: 0x4001 0000

7.3.1 Watchdog Configuration register (WDT_CFG)

Address Offset: 0x00

The WDT_CFG register controls the operation of the Watchdog through the combination of WDTEN and WDTIE bits. This register indicates the raw status for Watchdog Timer interrupts. A WDT interrupt is sent to the interrupt controller if both the WDINT bit and the WDTIE bit are set.

Bit	Name	Description	Attribute	Reset
31:16	WDKEY	Watchdog register key. Read as 0. When writing to the register you must write 0x5AFA to WDKEY, otherwise behavior of writing to the register is ignored.	W	0
15:3	Reserved		R	0
2	WDTINT	Watchdog interrupt flag. <read> 0: Watchdog does not cause an interrupt. 1: Watchdog time-out and causes an interrupt (Only when WDTIE =1). <write> 0: Clear this flag. SW shall feed Watchdog before clearing.</write></read>	R/W	0
1	WDTIE	 Watchdog interrupt enable. 0: Watchdog timeout will cause a chip reset. (Watchdog reset mode) Watchdog counter underflow will reset the MCU, and will clear the WDINT flag. 1: Watchdog timeout will cause an interrupt. (Watchdog interrupt mode) 	R/W	0
0	WDTEN	Watchdog enable.0: Disable.1: Enable. When enable the watchdog, the WDT_TC value is loaded in the watchdog counter.	R/W	0

7.3.2 Watchdog Timer Constant register (WDT_TC)

Address Offset: 0x08

The WDT_TC register determines the time-out value. Every time a feed sequence occurs the WDT_TC content is reloaded in to the Watchdog timer. It's an 8-bit counter. Thus the time-out interval is $T_{WDT_PCLK} \times 128 \times 1 \sim T_{WDT_PCLK} \times 128 \times 256$.

Watchdog overflow time = (31.25us x 1) x 128 x 1 ~ (31.25us x 32) x 128 x 256 = 4ms ~32768ms

Bit	Name	Description	Attribute	Reset
31:16	WDKEY	Watchdog register key. Read as 0. When writing to the register you must write 0x5AFA to WDKEY, otherwise behavior of writing to the register is ignored.	W	0
15:8	Reserved		R	0
7:0	TC[7:0]	Watchdog timer constant reload value = TC[7:0]+1 0000 0000 : Timer constant = 1 0000 0001 : Timer constant = 2 1111 1110 : Timer constant = 255 1111 1111 : Timer constant = 256	R/W	0xFF

• Watchdog clock source is fixed as ILRC.

7.3.3 Watchdog Feed register (WDT_FEED)

Address Offset: 0x0C

Bit	Name	Description	Attribute	Reset
31:16	WDKEY	Watchdog register key. Read as 0. When writing to the register you must write 0x5AFA to WDKEY, otherwise behavior of writing to the register is ignored.	W	0
15:0	FV[15:0]	Feed value (Read as 0x0) 0x55AA: The watchdog is fed, and the WDT_TC value is reloaded in the watchdog counter.	W	0

SPI

OVERVIEW 8.1

The SPI controller can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. Data transfers are in principle full duplex, with frames of 4 to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice it is often the case that only one of these data flows carries meaningful data.

8.2 **FEATURES**

- Compatible with Motorola SPI bus. \triangleright
- \triangleright Synchronous Serial Communication.
- ≻ Supports master or slave operation.
- 8-frame FIFO for both transmitter and receiver.
- 4-bit to 16-bit frame.
- \triangleright Maximum SPI speed of 24 Mbps (master) or 6 Mbps. (slave)
- Data transfer format is from MSB or LSB controlled by register.
- The start phase of data sampling location selection is 1st-phase or 2nd-phase controlled register. \triangleright

PIN DESCRIPTION 8.3

Pin Name	Туре	Description	GPIO Configuration
SCKn	0	SPI Serial clock (Master)	
	I	SPI Serial clock (Slave)	Depends on GPIOn_CFG
SELn	0	SPI Slave Select/SSI Frame Sync (Master)	
	I	SPI Slave Select (Slave)	Depends on GPIOn_CFG
MISOn	I	Master In Slave Out (Master)	Depends on GPIOn_CFG
	0	Master In Slave Out (Slave)	
MOSIA	0	Master Out Slave In (Master)	
WOSIN	Ι	Master Out Slave In (Slave)	Depends on GPIOn_CFG

8.4 INTERFACE DESCRIPTION

8.4.1 SPI

The SPI interface is a 4-wire interface where the SSEL signal behaves as a slave select. The main feature of the SPI format is that the inactive state and phase of the SCK signal are programmable through the CPOL and CPHA bits in <u>SPIn_CTRL1</u> register.

When the "CPOL" clock polarity control bit is LOW, it produces a steady state low value on the SCK pin. If the CPOL clock polarity control bit is HIGH, a steady state high value is placed on the CLK pin when data is not being transferred. The "CPHA" clock phase bit controls the phase of the clock on which data is sampled. When CPHA=1, the SCK first edge is for data transition, and receive and transmit data is at SCK 2nd edge. When CPHA=0, the 1st bit is fixed already, and the SCK first edge is to receive and transmit data.

The SPI data transfer timing as following figure:

MLSB	CPOL	СРНА	SCK Idle Status	Diagrams
0	0	1	Low	
0	1	1	High	
0	0	0	Low	MSB bit1 LSB Next data
0	1	0	High	MSB bit1 LSB Next data
1	0	1	Low	
1	1	1	High	LSB bit1 MSB
1	0	0	Low	LSB X bit1 X X X X X X MSB X Next data

8.4.2 COMMUNICATION FLOW

8.4.2.1 SINGLE-FRAME

8.4.2.2 MULTI-FRAME

8.5 AUTO-SEL

The Auto-SEL function is disabled by default, and Auto-SEL data flow is controlled by HW if enabled. If Auto-SEL function is disabled (SELDIS = 1), HW does NOT control SELn pin at all, SELn pin is GPIO. If Auto-SEL function is enabled (SELDIS = 0), SPI HW controls the SELn activity.

8.6 SPI REGISTERS

Base Address: 0x4001 C000 (SPI0)

8.6.1 SPI n Control register 0 (SPIn_CTRL0) (n=0)

Address Offset:0x00

* Note:

- > 1. Must reset SPI FSM with FRESET[1:0] after changing any configuration of SPI when SSPEN = 1.
- > 2. HW will switch I/O configurations refer to FORMAT bit directly when SSPEN = 1.

Bit	Name	Description	Attribute	Reset
31:19	Reserved		R	0
18	SELDIS	Auto-SEL disable bit. For SPI mode only. 0: Enable Auto-SEL flow control. 1: Disable Auto-SEL flow control.	R/W	1
17:15	RXFIFOTH[2:0]	RX FIFO Threshold level 000: RX FIFO threshold level = 0. 001: RX FIFO threshold level = 1. 111: RX FIFO threshold level = 7.	R/W	000b
14:12	TXFIFOTH[2:0]	TX FIFO Threshold level 000: TX FIFO threshold level = 0. 001: TX FIFO threshold level = 1. 111: TX FIFO threshold level = 7.	R/W	000b
11:8	DL[3:0]	Data length = DL[3:0] + 1. 0000~0001: Reversed. 0010: data length = 3. 1110: data length = 15. 1111: data length = 16.	R/W	1111b
7:6	FRESET[1:0]	 SPI FSM and FIFO Reset bit. 00: No effect. 01: Reserved. 10: Reserved. 11: Reset finite state machine and FIFO. (BUF_BUSY = 0, data in shift BUF is cleared, TX_EMPTY = 1, TX_FULL = 0, RX_EMPTY = 1, RX_FULL = 0, and data in FIFO is cleared). This bit will be cleared by HW automatically. 	W	0
5	Reserved		R	0
4	FORMAT	Interface format. 0: SPI. 1: Reserved.	R/W	0
3	MS	Master/Slave selection bit. 0: Act as Master. 1: Act as Slave.	R/W	0
2	SDODIS	Slave data output disable bit. (ONLY used in slave mode) 0: Enable slave data output. 1: Disable slave data output. (MISO=0)	R/W	0
1	LOOPBACK	Loop back mode enable. 0: Disable. 1: Data input from data output.	R/W	0
0	SSPEN	SPI enable bit. 0: Disable.	R/W	0

1: Enable and HW switches I/O configurations refer to FORMAT bit directly.

8.6.2 SPI n Control register 1 (SPIn_CTRL1) (n=0)

Address Offset: 0x04

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2	СРНА	 Clock phase for edge sampling. 0: Data changes at clock falling edge, latches at clock rising edge when CPOL = 0; Data changes at clock rising edge, latches at clock falling edge when CPOL = 1. 1: Data changes at clock rising edge, latches at clock falling edge when CPOL = 0; Data changes at clock falling edge, latches at clock rising edge when CPOL = 0; Data changes at clock falling edge, latches at clock rising edge when CPOL = 1. 	R/W	0
1	CPOL	Clock polarity selection bit. 0: SCK idles at Low level. 1: SCK idles at High level.	R/W	0
0	MLSB	MSB/LSB selection bit 0: MSB transmit first. 1: LSB transmit first.	R/W	0

8.6.3 SPI n Clock Divider register (SPIn _CLKDIV) (n=0)

Address Offset: 0x08

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	DIV[7:0]	SPIn clock divider 0: SCK = SSPn_PCLK / 2 1: SCK = SSPn_PCLK / 4 2: SCK = SSPn_PCLK / 6 X: SCK = SSPn_PCLK / (2X+2)	R/W	0

8.6.4 SPI n Status register (SPIn _STAT) (n=0)

Address Offset: 0x0C

Bit	Name	Description	Attribute	Reset
31:7	Reserved		R	0
6	RXFIFOTHF	RX FIFO threshold flag. 0: Data in RX FIFO ≤ RXFIFOTH. 1: Data in RX FIFO > RXFIFOTH.	R	0
5	TXFIFOTHF	TX FIFO threshold flag. 0: Data in TX FIFO > TXFIFOTH. 1: Data in TX FIFO ≤ TXFIFOTH.	R	1
4	BUSY	Busy flag. 0: SPI controller is idle. 1: SPI controller is transferring.	R	0
3	RX_FULL	RX FIFO full flag. 0: RX FIFO is NOT full. 1: RX FIFO is full.	R	0
2	RX_EMPTY	RX FIFO empty flag. 0: RX FIFO is NOT empty. 1: RX FIFO is empty.	R	1
1	TX_FULL	TX FIFO full flag. 0: TX FIFO is NOT full.	R	0

32-Bit Cortex-M0 Micro-Controller

		1: TX FIFO is full.		
0	TX_EMPTY	TX FIFO empty flag.0: TX FIFO is NOT empty. In Master mode, the transmitter will begin to transmit automatically.1: TX FIFO is empty.	R	1

8.6.5 SPI n Interrupt Enable register (SPIn _IE) (n=0)

Address Offset: 0x10

This register controls whether each of the four possible interrupt conditions in the SPI controller is enabled.

Bit	Name	Description	Attribute	Reset
31:4	Reserved		R	0
3	TXFIFOTHIE	TX FIFO threshold interrupt enable. 0: Disable. 1: Enable.	R/W	0
2	RXFIFOTHIE	RX FIFO threshold interrupt enable. 0: Disable. 1: Enable.	R/W	0
1	RXTOIE	RX time-out interrupt enable. 0: Disable. 1: Enable.	R/W	0
0	RXOVFIE	RX Overflow interrupt enable. 0: Disable. 1: Enable.	R/W	0

8.6.6 SPI n Raw Interrupt Status register (SPIn _RIS) (n=0)

Address Offset: 0x14

This register contains the status for each interrupt condition, regardless of whether or not the interrupt is enabled in SPIn_IE register.

This register indicates the status for SPI control raw interrupts. An SPI interrupt is sent to the interrupt controller if the corresponding bit in the SPIn_IE register is set.

Bit	Name	Description	Attribute	Reset
31:4	Reserved		R	0
3	TXFIFOTHIF	TX FIFO threshold interrupt flag. 0: No TX FIFO threshold interrupt. 1: TX FIFO threshold triggered.	R	0
2	RXFIFOTHIF	RX FIFO threshold interrupt flag. 0: No RX FIFO threshold interrupt. 1: RX FIFO threshold triggered.	R	0
1	RXTOIF	RX time-out interrupt flag. RXTO occurs when the RX FIFO is not empty, and has not been read for a time-out period (32*SSPn_PCLK). The time-out period is the same for master and slave modes. 0: RXTO doesn't occur. 1: RXTO occurs.	R	0
0	RXOVFIF	RX Overflow interrupt flag. RXOVF occurs when the RX FIFO is full and another frame is completely received. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs. 0: RXOVF doesn't occur. 1: RXOVF occurs.	R	0

8.6.7 SPI n Interrupt Clear register (SPIn _IC) (n=0)

Address Offset: 0x18

Bit	Name	Description	Attribute	Reset
31:4	Reserved		R	0
3	TXFIFOTHIC	0: No effect. 1: Clear TXFIFOTHIF bit.	W	0
2	RXFIFOTHIC	0: No effect 1: Clear RXFIFOTHIF bit.	W	0
1	RXTOIC	0: No effet. 1: Clear RXTOIF bit	W	0
0	RXOVFIC	0: No effet. 1: Clear RXOVFIF bit	W	0

8.6.8 SPI n Data register (SPIn _DATA) (n=0)

Address Offset: 0x1C

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	DATA[15:0]	Write SW can write data to be sent in a future frame to this register when TX_FULL = 0 in <u>SPIn_STAT</u> register (TX FIFO is not full). If the TX FIFO was previously empty and the SPI controller is not busy on the bus, transmission of the data will begin immediately. Otherwise the data written to this register will be sent as soon as all previous data has been sent (and received). <u>Read</u> SW can read data from this register when RX_EMPTY=0 in <u>SPIn_STAT</u> registe (Rx FIFO is not empty). When SW reads this register, the SPI controller returns data from the least recent frame in the RX FIFO. If the data length is less than 16 bit, the data is right-justified in this field with higher order bits filled with 0s.	R/W	0

8.6.9 SPI n Data Fetch register (SPIn _DF) (n=0)

Address Offset: 0x20

Bit	Name	Description	Attribute	Reset
31:1	Reserved		R	0
0	DF	SPI data fetch control bit. 0: Disable. 1: Enable.	R/W	0

9 I2C

9.1 OVERVIEW

The I2C bus is bidirectional for inter-IC control using only two wires: Serial Clock Line (SCL) and Serial Data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be controlled by more than one bus master connected to it. It is also SMBus 2.0 compatible.

The I2C interface is byte oriented and has four operating modes:

- Master transmitter mode
- Master receiver mode
- Slave transmitter mode
- Slave receiver mode

9.2 FEATURES

The I2C interface complies with the entire I2C specification, supporting the ability to turn power off to the ARM Cortex-M0 without interfering with other devices on the same I2C-bus.

- Standard I2C-compliant bus interfaces may be configured as Master or Slave.
- I2C Master features:
 - Clock generation
 - Start and Stop generation
- I2C Slave features:
 - Programmable I2C Address detection
 - Optional recognition of up to four distinct slave addresses
 - Stop bit detection
- Supports different communication speeds:
 - Standard Speed (up to 100KHz)
 - Fast Speed (up to 400 KHz)
- Arbitration is handled between simultaneously transmitting masters without corruption of serial data on the bus.
- Programmable clock allows adjustment of I2C transfer rates.
- > Data transfer is bidirectional between masters and slaves.
- > Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- > Serial clock synchronization is used as a handshake mechanism to suspend and resume serial transfer.
- Monitor mode allows observing all I2C-bus traffic, regardless of slave address.
- > I2C-bus can be used for test and diagnostic purposes.
- Generation and detection of 7-bit/10-bit addressing and General Call.

9.3 PIN DESCRIPTION

Pin Name	Туре	Description	GPIO Configuration
SCLn	I/O	I2C Serial clock	Output with Open-drain
			Input depends on GPIOn_CFG
SDAn	I/O	I2C Serial data	Output with Open-drain
			Input depends on GPIOn_CFG

9.4 I2C PROPOCOL

I2C transmission structure includes a START(S) condition, 8-bit address byte, one or more data byte and a STOP (P) condition. START condition is generated by master to initial any transmission.

Data is transmitted with the Most Significant Bit (MSB) first. In address byte, the higher 7-bit is address bit and the lowest bit is data direction (R/W) bit. When R/W=0, it assigns a "WRITE" operation. When R/W=1, it assigns a "READ" operation.

After each byte is received, the receiver (a master or a slave) must send an acknowledge (ACK) bit. If transmitter can't receive an ACK, it will recognize a not acknowledge (NACK). In WRITE operation, the master will transmit data to the slave and then waits for ACK from slave. In READ operation, the slave will transmit data to the master and then waits for ACK from master. In the end, the master will generate a STOP condition to finish transmission.

9.4.1 7-BIT ADDRESSING MODES

9.4.1.1 MASTER TRANSMITTER MODE

9.4.1.2 MASTER RECEIVER MODE Write 1 to ACK bit Write 1 to ACK bit Start Acknowledge sequence Start Acknowledge soquoned Write 1 to STA bit START condition begins ACK from Master From Slave Write 1 to STO bit - STA=0 Transmit Address to Slave R/W=1 Receiving Data from Slave Receiving Data from Slave SDA (A7)(A6)(A5)(A4)(A3)(A2)(A1) l D7 D6 05 04 D3 02 D1 D0 D6 D6 D5 D4 D3 D2 D1 ACK =0 D0 ACK Write address and TXDATA Start transmit ACK_ is not sent SCL _1_2_3_4_5_6_7_8_9\ 1 2 3 4 5 6 7 4 5 6 7 8 s b ß Р ata shifted in failing edgeof SCI Ā Master terminal transfer

9.4.1.3 SLAVE TRANSMITTER MODE

9.4.1.4 SLAVE RECEIVER MODE

9.4.2 10-BIT ADDRESSING MODES

9.4.2.1 MASTER TRANSMITTER MODE

9.4.2.2 MASTER RECEIVER MODE

9.5 ARBITRATION

In multi-master condition, more than one master may transmit on bus in the same time. It must be decided which master has the control of bus and complete its transmission. Clock synchronization and arbitration are used to configure multi-master transmission.

Clock synchronization is executed by synchronizing the SCL signal with anther devices. When two masters want to transmit data in the same time, the clock synchronization will start by the High to Low transition on the SCL. If master 1 pulls the SCL line LOW first, it holds the SCL in LOW status until the SCL line is released to HIGH status. However, if anther master still pulls the SCL line LOW, the SCL Low to High transition of master 1 may not change SCL status (SCL line is still LOW). The SCL will transit from LOW to HIGH when the all masters release the SCL line. In the duration, the master1 will wait for SCL transition from LOW to HIGH, and then continue its transmission.

After clock synchronization, the clock of all devices is synchronized with the SCL clock. Arbitration is used to decide which master can complete its transmission by SDA signal. Two masters may send out a START condition and transmit data on bus in the same time, and may be influenced by each other. Arbitration will force one master to lose the control on bus. Data transmission will keep until two masters output different data signal. If one master transmits HIGH status and anther master transmits LOW status, the SDA will be pulled low. The master which pulls the SDA line High will detect the different with SDA and loses the control on bus. The mater which pulls the SDA line LOW status wins the bus control and continues its transmission. There is no data miss during arbitration.

Arbitration may also be lost in the master receiver mode. Loss of arbitration in this mode can only occur while the I2C block is returning a "not acknowledge" to the bus. Arbitration is lost when another device on the bus pulls this signal low. Since this can occur only at the end of a serial byte, the I2C block generates no further clock pulses.

9.6 CLOCK STRETCHING

Clock stretching pauses a transaction by pulling the SCL line LOW. The transaction cannot continue until the line is released HIGH again. Clock stretching is optional.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then pulls the SCL line LOW after reception and acknowledgment of a byte to force the master into a wait state until the slave is ready for the next byte transfer in a type of handshake procedure.

9.7 GENERAL CALL ADDRESS

The general call address is a special address which is reserved as all "0" of 7-bit address and is for addressing every device connected to the I₂C-bus at the same time. However, if a device does not need any of the data supplied within the general call structure, it can ignore this address by not issuing an acknowledgment (ACK). If a device does require data from a general call address, it acknowledges this address and behaves as a slave-receiver. The master does not actually know how many devices acknowledged if one or more devices respond. The second and following bytes are acknowledged by every slave-receiver capable of handling this data. A slave who cannot process one of these bytes must ignore it by not-acknowledging. If one or more slaves acknowledge, the not-acknowledge will not be seen by the master. The meaning of the general call address is specified in the second byte

9.8 TIMING CHARACTERISTICS

9.8.1 MASTER TRANSMITTER MODE

 $\label{eq:thigh: scl} t_{HIGH:} (SCLHT + 1) * I2C_PCLK cycle \\ t_{LOW:} (SCLLT + 1) * I2C_PCLK cycle \\ t_{HD;STA:} (SCLLT + 4) * I2C_PCLK cycle \\ t_{HD;DAT:} 2 * I2C_PCLK cycle ~ 3 * I2C_PCLK cycle \\ t_{SU;STA:} (SCLL + 3) * I2C_PCLK cycle \\ t_{SU:STO:} (SCLLT + 2) * I2C_PCLK cycle ~ (SCLLT + 3) * I2C_PCLK cycle \\ \end{tabular}$

9.8.2 SLAVE TRANSMITTER MODE

 $\label{eq:thigh} \begin{array}{l} t_{\text{HIGH}} \text{: controlled by Master} \\ t_{\text{LOW}} \text{: controlled by Master} \\ t_{\text{HD;DAT}} \text{: } 2 \ ^{\text{HIC}} \text{PCLK cycle} \ ^{\text{C}} 3 \ ^{\text{HIC}} \text{PCLK cycle} \\ t_{\text{SU:DAT}} \text{: } t_{\text{LOW}} \ ^{\text{C}} 2 \ ^{\text{HIC}} \text{PCLK cycle} \ ^{\text{C}} 3 \ ^{\text{HIC}} \text{PCLK cycle} \end{array}$

9.9 I2C REGISTERS

Base Address: 0x4001 8000 (I2C0)

9.9.1 I2C n Control register (I2Cn_CTRL) (n=0)

Address Offset: 0x00

Setting of the bits in this register controls operation of the I2C interface.

When STA =1 and the I2C interface is not already in master mode, it enters master mode, checks the bus and generates a START condition if the bus is free. If the bus is not free, it waits for a STOP condition (which will free the bus) and generates a START condition after a delay of a half clock period of the internal clock generator. If the I2C interface is already in master mode and data has been transmitted or received, it transmits a Repeated START condition. STA may be set at any time, including when the I2C interface is in an addressed slave mode.

When STO = 1 in master mode, a STOP condition is transmitted on the I2C bus. When the bus detects the STOP condition, STO is cleared automatically. In slave mode, setting STO bit can recover from an error condition. In this case, no STOP condition is transmitted to the bus. The HW behaves as if a STOP condition has been received and it switches to "not addressed" slave receiver mode.

If STA and STO are both set, then a STOP condition is transmitted on the I2C bus if it the interface is in master mode, and transmits a START condition thereafter. If the I2C interface is in slave mode, an internal STOP condition is generated, but is not transmitted on the bus.

* Note:

- > 1. I2CEN shall be set at last.
- 2. HW will assign SCL0/SCL1 and SDA0/SDA1 pins as output pins with open-drain function instead of GPIO automatically.
- > 3. ACK and NACK bits can't both be "1" when receiving data.
- > 4. User has to write 1 to ACK or NACK bit in Master mode to continue next RX process.

Bit	Name	Description	Attribute	Reset
31:9	Reserved		R	0
8	I2CEN	 I2C Interface enable bit. 0: Disable. The STO bit is forced to "0". 1: Enable. I2EN shall not be used to temporarily release the I2C bus since the bus status is lost when I2CEN resets. The ACK flag should be used instead. 	R/W	0
7	MODE	I2C mode selection bit. 0: Standard/Fast mode. 1: Reserved.	R	0
6	Reserved			
5	STA	 START bit 0: No START condition or Repeated START condition will be generated. 1: Cause the I2C interface to enter master mode and transmit a START or a Repeated START condition. Automatically cleared by HW. 	R/W	0
4	STO	 STOP flag. O: Stop condition idle. 1: Cause the I2C interface to transmit a STOP condition in master mode, or recover from an error condition in slave mode. Automatically cleared by HW. 	R/W	0
3	Reserved		R	0
2	ACK	 Assert ACK (Low level to SDA) flag. 0: Master mode → No function. Slave mode → Return a NACK after receiving address or data. 1: An ACK will be returned during the acknowledge clock pulse on SCLn. when 	R/W	0

		S 32-Bit Cor	N32F260 tex-M0 Micro-	Series Controller
		 The address in the Slave Address register has been received. The General Call address has been received while the General Call bit (GC) in the ADR register is set. A data byte has been received while the I2C is in the master receiver mode. A data byte has been received while the I2C is in the addressed slave receiver mode. HW will clear after issuing ACK automatically. 		
1	NACK	 Assert NACK (HIGH level to SDA) flag. 0: No function. 1: An NACK will be returned during the acknowledge clock pulse on SCLn when A data byte has been received while the I2C is in the master receiver mode. HW will clear after issuing NACK automatically. 	R/W	0
0	Reserved		R	0

9.9.2 I2C n Status register (I2Cn_STAT) (n=0)

Address Offset: 0x04

Check this register when I2C interrupt occurs, and all status will be cleared automatically by writing I2Cn_CTRL or I2Cn_TXDATA register.

While I2CIF =1, the low period of the serial clock on the SCL line is stretched, and the serial transfer is suspended. When SCL is HIGH, it is unaffected by the state of I2CIF.

Following events will trigger I2C interrupt if I2C interrupt is enabled in NVIC interrupt controller.

- START/Repeat START condition
- STOP condition
- Timeout
- Data byte transmitted or received
- ACK Transmit or received
- NACK Transmit or received

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15	I2CIF	 I2C Interrupt flag. 0: I2C status doesn't change. 1: Read→I2C status changes. Write→Clear this flag. 	R/W	0
14:10	Reserved		R	0
9	TIMEOUT	Time-out status. 0: No Timeout. 1: Timeout.	R	0
8	LOST_ARB	Lost arbitration. 0: Not lost arbitration. 1: Lost arbitration.	R	0
7	SLV_TX_HIT	0: No matched slave address.1: Slave address hit, and is called for TX in slave mode.	R	0
6	SLV_RX_HIT	0: No matched slave address. 1: Slave address hit, and is called for RX in slave mode.	R	0
5	MST	Master/Slave status. 0: I2C is in Slave state. 1: I2C is in Master state.	R	0
4	START_DN	 Start done status. 0: No START bit. 1: MASTER mode→ a START bit was issued. SLAVE mode→a START bit was received. 	R	0
3	STOP_DN	Stop done status. 0: No STOP bit. 1: MASTER mode→a STOP condition was issued.	R	0

SLAVE mode→a STOP condition was received. NACK done status. 2 NACK STAT R 0 0 : Not received a NACK. 1 : Received a NACK. ACK done status. ACK STAT 1 R 0 0 : Not received an ACK. 1 : Received an ACK. RX done status. 0 RX_DN R 0 0: No RX with ACK/NACK transfer. 1: 8-bit RX with ACK/NACK transfer is done.

9.9.3 I2C n TX Data register (I2Cn_TXDATA) (n=0)

Address Offset: 0x08

This register contains the data to be transmitted.

In Master TX mode, CPU writes this register will trigger a TX function. In Slave TX mode, CPU has to write this register before next TX procedure.

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	DATA[7:0]	Data to be transmitted.	R/W	0x00

9.9.4 I2C n RX Data register (I2Cn_RXDATA) (n=0)

Address Offset: 0x0C

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	DATA[7:0]	Contains the data received. Read this register when RX_DN = 1.	R	0x00

9.9.5 I2C n Slave Address 0 register (I2Cn_SLVADDR0) (n=0)

Address Offset: 0x10

Only used in slave mode. In master mode, this register has no effect.

If this register contains 0x00, the I2C will not acknowledge any address on the bus. Register ADR0 to ADR3 will be cleared to this disabled state on reset.

Bit	Name	Description	Attribute	Reset
31:10	ADD_MODE	Slave address mode. 0 : 7-bit address mode. 1: 10-bit address mode.	RW	0
30	GCEN	General call address enable bit 0: Disable. 1: Enable general call address. (0x0)	RW	0
29:10	Reserved		R	0
9:0	ADDR[9:0]	The I2C slave address. ADD[9:0] is valid when ADD_MODE = 1. ADD[7:1] is valid when ADD_MODE = 0.	R/W	0

9.9.6 I2C n Slave Address 1~3 register (I2Cn_SLVADDR1~3) (n=0)

Address Offset: 0x14, 0x18, 0x1C

32-Bit Cortex-M0 Micro-Controller

Bit	Name	Description	Attribute	Reset
31:10	Reserved		R	0
9:0	ADDR[9:0]	The I2C slave address. ADD[9:0] is valid when ADD_MODE = 1. ADD[7:1] is valid when ADD_MODE = 0.	R/W	0

9.9.7 I2C n SCL High Time register (I2Cn_SCLHT) (n=0)

Address Offset: 0x20

Note: I2C Bit Frequency = I2Cn_PCLK / (I2Cn_SCLHT+I2Cn_SCLLT)

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	SCLH[7:0]	Count for SCL High Period time. SCL High Period Time = (SCLH+1) * I2C0_PCLK cycle	R/W	0x04

9.9.8 I2C n SCL Low Time register (I2Cn_SCLLT) (n=0)

Address Offset: 0x24

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:0	SCLL[7:0]	Count for SCL Low Period time. SCL Low Period Time = (SCLL+1) * I2C0_PCLK cycle.	R/W	0x04

9.9.9 I2C n Timeout Control register (I2Cn_TOCTRL) (n=0)

Address Offset: 0x2C

Timeout happens when Master/Slave SCL remained LOW for: TO * 32 * I2C0_PCLK cycle.

When I2C timeout occurs, the I2C transfer will return to "IDLE" state and issue a TO interrupt to inform user. That means SCL/SDA will be released by HW after timeout. User can issue a STOP after timeout interrupt occurred in Master mode.

Time-out status will be cleared automatically by writing I2Cn_CTRL or I2Cn_TXDATA register.

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	TO[15:0]	Count for checking Timeout. 0: Disable Timeout checking. N: Timeout period time = N*32*I2Cn_PCLK cycle.	R/W	0x0

10 USB FS DEVICE INTERFACE

10.1 OVERVIEW

The USB is the answer to connectivity for the PC architecture. A fast, bi-directional interrupt pipe, low-cost, dynamically attachable serial interface is consistent with the requirements of the PC platform of today and tomorrow. The SONIX USB microcontrollers are optimized for human-interface computer peripherals such as a mouse, keyboard, joystick, and game pad.

USB Specification Compliance

- Conforms to USB specifications, Version 2.0.
- Supports 1 Full-speed USB device address.
- Supports 1 control endpoint and 4 configurable endpoints for interrupt/bulk transfer.
- Integrated USB transceiver.
- 5V to 3.3V regulator output for D+ 1.5K ohm internal resistor pull up.

10.2 FEATURES

- Conforms to USB specifications, Version 2.0.
- Supports 1 Full-speed USB device address.
- Supports 1 control endpoint with maximum packet size 8 bytes, 16 bytes, 32 bytes, or 64 bytes.
- Supports 4 endpoints configurable for interrupt/bulk transfer.
- Supports USB SRAM size 256 bytes shared by all 5 endpoints.
- Flexible data FIFO offset setting for endpoints except endpoint 0.
- ➢ 5V to 3.3V regulator output for D+ 1.5K ohm internal resistor pull up.
- Integrated USB transceiver.
- **FS USB** function work under system clock Fcpu/1, Fcpu/2, Fcpu/4.

10.3 PIN DESCRIPTION

Pin Name	Туре	Description	GPIO Configuration
D+	I/O	USB differential signal D+	N/A
D-	I/O	USB differential signal D-	N/A

10.4 BLOCK DIAGRAM

10.5 USB SRAM ACCESS

There is 256 bytes SRAM in the controller and the 5 endpoints share this buffer. The user shall configure each endpoint's effective starting address in the buffer offset register before the USB function active. The USB_EPnBUFOS block is used to control each endpoint's effective starting address.

The principles to access USB SRAM are as below.

- Each EPnBUFOS setting must be word-aligned, with 2 LSB bits equal to '0'.
- The maximum length of EPn SRAM buffer is defined by user. However, each endpoint should have its own EPn SRAM buffer without overlapping each other.

10.6 USB MACHINE

The USB machine allows the microcontroller to communicate with the USB host. The hardware handles the following USB bus activity independently of the microcontroller.

The USB machine will do:

- Translate the encoded received data and format the data to be transmitted on the bus.
- CRC checking and generation by hardware. If CRC is not correct, hardware will not send any response to USB host.
- Send and update the data toggle bit (Data1/0) automatically by hardware.
- Send appropriate ACK/NAK/STALL handshakes.
- SETUP, IN, or OUT Token type identification. Set the appropriate bit once a valid token is received.
- Place valid received data in the appropriate endpoint FIFOs.
- Bit stuffing/unstuffing.
- Address checking. Ignore the transactions not addressed to the device.
- Endpoint checking. Check the endpoint's request from USB host, and set the appropriate bit of registers.

Firmware is required to handle the rest of the following tasks:

- Coordinate enumeration by decoding USB device requests.
- Fill and empty the FIFOs.
- Reset/Suspend/Resume coordination.
- Remote wake up function.
- Determine the right interrupt request of USB communication

10.7 USB INTERRUPT

The USB function will accept the USB host command and generate the relative interrupts, and enter USB_IRQ_Handler. Firmware is required to check the USB status bit to realize what request comes from the USB host. The USB function interrupt is generated when:

- The endpoint 0 is set to accept a SETUP token.
- The device receives an ACK handshake after a successful read transaction (IN) from the host.
- If the endpoint is in ACK OUT modes, an interrupt is generated when data is received.
- The USB host sends USB suspend request to the device.
- USB bus reset/resume event occurs.
- The USB endpoints interrupt after a USB transaction complete is on the bus.
- The NAK handshaking when the NAK interrupt enables.

10.8 USB ENUMERATION

A typical USB enumeration sequence is shown below.

- 1. The host computer sends a SETUP packet followed by a DATA packet to USB address 0 requesting the Device descriptor.
- 2. Firmware decodes the request and retrieves its Device descriptor from the program memory tables.
- 3. The host computer performs a control read sequence and firmware responds by sending the Device descriptor over the USB bus, via the on-chip USB SRAM.
- 4. After receiving the descriptor, the host sends a SETUP packet followed by a DATA packet to address 0 assigning a new USB address to the device.
- 5. Firmware stores the new address in its USB Device Address Register after the no-data control sequence completes.
- 6. The host sends a request for the Device descriptor using the new USB address.
- 7. Firmware decodes the request and retrieves the Device descriptor from program memory tables.
- The host performs a control read sequence and firmware responds by sending its Device descriptor over the USB bus.
- 9. The host generates control reads from the device to request the Configuration and Report descriptors.
- 10. Once the device receives a Set Configuration request, its functions may now be used.
- 11. Firmware should take appropriate action for Endpoint 0~N transactions, which may occur from this point.

10.9 USB REGISTERS

Base Address: 0x4005 C000

R: read only, W: write only, R/W: both read and write

<u>Register</u>	<u>Offset</u>	<u>R/W</u>	Description	Reset Value
USB_INTEN	0x00	R/W	USB Interrupt Enable Register.	0x0000_0000
USB_INSTS	0x04	R	USB Interrupt Event Status Register.	0x0000_0000
USB_INSTSC	0x08	W	USB Interrupt Event Status Clear Register.	0x0000_0000
USB_ADDR	0x0C	R/W	USB Device Address Register.	0x0000_0000
USB_CFG	0x10	R/W	USB Configuration Register.	0x0000_0000
USB_SGCTL	0x14	R/W	USB Signal Control Register.	0x0000_0000
USB_EP0CTL	0x18	R/W	USB Endpoint 0 Control Register.	0x0000_0000
USB_EP1CTL	0x1C	R/W	USB Endpoint 1 Control Register.	0x0000_0000
USB_EP2CTL	0x20	R/W	USB Endpoint 2 Control Register.	0x0000_0000
USB_EP3CTL	0x24	R/W	USB Endpoint 3 Control Register.	0x0000_0000
USB_EP4CTL	0x28	R/W	USB Endpoint 4 Control Register.	0x0000_0000
USB_EPTOGGLE	0x3C	R/W	USB Endpoint Data Toggle Register.	0x0000_003F
USB_EP1BUFOS	0x48	R/W	USB Endpoint 1 Buffer Offset Register.	0x0000_0040
USB_EP2BUFOS	0x4C	R/W	USB Endpoint 2 Buffer Offset Register.	0x0000_0080
USB_EP3BUFOS	0x50	R/W	USB Endpoint 3 Buffer Offset Register.	0x0000_00C0
USB_EP4BUFOS	0x54	R/W	USB Endpoint 4 Buffer Offset Register.	0x0000_00E0
USB_FRMNO	0x60	R	USB Frame Number Register.	0x0000_0000
USB_PHYPRM	0x64	R/W	USB PHY Parameter Register.	0x0000_0000
USB_PHYPRM2	0x6C	R/W	USB PHY Parameter Register 2	0x0000_0000
USB_PS2CTL	0x70	R/W	USB PS/2 Control Register.	0x0000_0000
USB_RWADDR	0x78	R/W	USB FIFO Read/Write Address Register	0x0000_0000
USB_RWDATA	0x7C	R/W	USB FIFO Data Register	0x0000_0000
USB_RWSTATUS	0x80	R/W	USB FIFO Read/Write Status Register	0x0000_0000
USB_RWADDR2	0x84	R/W	USB FIFO Read/Write Address Register2	0x0000_0000
USB_RWDATA2	0x88	R/W	USB FIFO Data Register2	0x0000_0000
USB_RWSTATUS2	0x8C	R/W	USB FIFO Read/Write Status Register2	0x0000_0000

10.9.1 USB Interrupt Enable Register (USB_INTEN)

Address Offset: 0x00 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	BUS_IE	Bus Event Interrupt Enable. 0: Disable BUS event interrupt. 1: Enable Bus event interrupt. Any bus event including BUS_RESET, BUS_SUSPEND, and BUS_RESUME triggers USB interrupt.	R/W	0
30	USB_SOF_IE	USB SOF Interrupt Enable. 0: Disable USB SOF interrupt. 1: Enable USB SOF interrupt.	R/W	0
29	USB_IE	USB Event Interrupt Enable. 0: Disable USB event interrupt. 1: Enable USB event interrupt. Any USB event except EP1~EP6's NAK triggers USB interrupt.	R/W	0
28	BUSWK_IE	BUSWK_IE: Bus Wake Up Interrupt Enable. 0: Disable Wake Up event interrupt. 1: Enable Wake Up event interrupt.	R/W	0
27:5	Reserved		R	0
4	EPN_ACK_EN	Enable all of EP(1~4) ACK Interrupt 0: Disable EP1 to 4 ACK interrupt function. 1: Enable EP1 to 4 ACK interrupt function.	R/W	0

3	EP4_NAK_EN	EP4 NAK Interrupt Enable 0: Disable EP4 NAK interrupt function. 1: Enable EP4 NAK interrupt function.	R/W	0
2	EP3_NAK_EN	EP3 NAK Interrupt Enable 0: Disable EP3 NAK interrupt function. 1: Enable EP3 NAK interrupt function.	R/W	0
1	EP2_NAK_EN	EP2 NAK Interrupt Enable 0: Disable EP2 NAK interrupt function. 1: Enable EP2 NAK interrupt function.	R/W	0
0	EP1_NAK_EN	EP1 NAK Interrupt Enable 0: Disable EP1 NAK interrupt function. 1: Enable EP1 NAK interrupt function.	R/W	0

10.9.2 USB Interrupt Event Status Register (USB_INSTS)

Address Offset: 0x04

Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	BUS_RESET	USB Bus Reset signal (>2.5us SE0) flag 0: No bus reset signal is detected. 1: Bus reset signal is detected. Cleared by write 1 to USB_INSTSC[31].	R	0
30	BUS_SUSPEND	USB Bus Suspend signal (>3ms idle state) flag. 0: No bus suspend is detected. 1: Bus suspend is detected.	R	0
29	BUS_RESUME	USB Bus Resume signal flag0: No bus resume signal is detected.1: Bus resume signal from suspend mode is detected. Cleared by write 1 to USB_INSTSC[29].	R	0
28:27	Reserved		R	0
26	USB_SOF	USB SOF packet received flag. 0: No USB SOF packet. 1: USB SOF packet is received. Cleared by write 1 to USB_INSTSC[26].	R	0
25	Reserved		R	0
24	EP0_PRESETUP	EP0 Setup token packet flag. This flag will not trigger USB interrupt. 0: No EP0 Setup token packet. 1: EP0 Setup token packet is received. Cleared by write 1 to USB_INSTSC[24]	R	0
23	EP0_SETUP	 EP0 Setup transaction flag. 0: No EP0 Setup transaction. 1: EP0 Setup transaction is completed. Cleared by write 1 to USB_INSTSC[23]. 	R	0
22	EP0_IN	 EP0 IN ACK transaction flag. 0: No EP0 IN ACK Transaction. 1: EP0 IN ACK transaction is completed. Cleared by write 1 to USB_INSTSC[22]. 	R	0
21	EP0_OUT	EP0 OUT ACK transaction flag.0: No EP0 OUT ACK transaction.1: EP0 OUT ACK transaction is completed. Cleared by write 1 to USB_INSTSC[21].	R	0
20	EP0_IN_STALL	 EP0 IN STALL transaction flag. 0: No EP0 IN STALL transaction. 1: EP0 IN STALL transaction is completed. Cleared by write 1 to USB_INSTSC[20]. 	R	0
19	EP0_OUT_STALL	 EP0 OUT STALL transaction flag. 0: No EP0 OUT STALL transaction. 1: EP0 OUT STALL transaction is completed. Cleared by write 1 to USB_INSTSC[19]. 	R	0

18	ERR_SETUP	 Wrong Setup data received. This flag will not trigger USB interrupt. 0: Normal 8-byte Setup DATA0 is received. 1: Setup data is not 8-byte or is not DATA0. Cleared by write 1 to USB_INSTSC[18]. 	R	0
17	ERR_TIMEOUT	 Timeout status. This flag will not trigger USB interrupt. 0: No timeout. 1: Host ACK response timeout after IN data packet is sent. Cleared by write 1 to USB_INSTSC[17]. 	R	0
16:12	Reserved		R	0
11	EP4_ACK	Endpoint 4 ACK transaction flag. 0: No Endpoint 4 ACK transacation. 1: Endpoint 4 ACK transaction completes. Cleared by write 1 to USB_INSTSC[11].	R	0
10	EP3_ACK	Endpoint 3 ACK transaction flag. 0: No Endpoint 3 ACK transacation. 1: Endpoint 3 ACK transaction completes. Cleared by write 1 to USB_INSTSC[10].	R	0
9	EP2_ACK	Endpoint 2 ACK transaction flag. 0: No Endpoint 2 ACK transacation. 1: Endpoint 2 ACK transaction completes. Cleared by write 1 to USB_INSTSC[9].	R	0
8	EP1_ACK	Endpoint 1 ACK transaction flag. 0: No Endpoint 1 ACK transacation. 1: Endpoint 1 ACK transaction completes. Cleared by write 1 to USB_INSTSC[8].	R	0
7:4	Reserved		R	0
3	EP4_NAK	Endpoint 4 NAK transaction flag. 0: No EP4 NAK transaction. 1: EP4 NAK transaction completes. Cleared by write 1 to USB_INSTSC[3].	R	0
2	EP3_NAK	Endpoint 3 NAK transaction flag. 0: No Endpoint 3 NAK transaction. 1: EP3 NAK transaction completes. Cleared by write 1 to USB_INSTSC[2].	R	0
1	EP2_NAK	Endpoint 2 NAK transaction flag. 0: No EP2 NAK transaction. 1: EP2 NAK transaction completes. Cleared by write 1 to USB_INSTSC[1].	R	0
0	EP1_NAK	Endpoint 1 NAK transaction flag. 0: No EP1 NAK transaction. 1: EP1 NAK transaction completes. Cleared by write 1 to USB_INSTSC[0].	R	0

10.9.3 USB Interrupt Event Status Clear Register (USB_INSTSC)

Address Offset: 0x08 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	BUS_RESETC	0: No effect. 1: Clear BUS_RESET bit.	W	0
30	Reserved		R	-
29	BUS_RESUMEC	0: No effect. 1: Clear BUS_RESUME bit.	W	0
28:27	Reserved		R	-
26	USB_SOFC	0: No effect. 1: Clear USB_SOF bit.	W	0
25	Reserved		R	0
24	EP0_PRESETUPC	0: No effect 1: Clear EP0_PRESETUP bit.	W	0
23	EP0_SETUPC	0: No effect 1: Clear EP0_SETUP bit.	W	0

22	EP0_INC	0: No effect. 1: Clear EP0_IN bit.	W	0
21	EP0_OUTC	0:.No effect. 1: Clear EP0_OUT bit.	W	0
20	EP0_IN_STALLC	0: No effect. 1: Clear EP0_IN_STALL bit.	W	0
19	EP0_OUT_STALLC	0: No effect. 1: Clear EP0_OUT_STALL bit.	W	0
18	ERR_SETUPC	0: No effect. 1: Clear ERR_SETUP bit.	W	0
17	ERR_TIMEOUTC	0: No effect. 1: Clear ERR_TIMEOUT bit.	W	0
16:12	Reserved		R	-
11	EP4_ACKC	0: No effect. 1: Clear EP4_ACK bit.	W	0
10	EP3_ACKC	0: No effect. 1: Clear EP3_ACK bit.	W	0
9	EP2_ACKC	0: No effect. 1: Clear EP2_ACK bit.	W	0
8	EP1_ACKC	0: No effect. 1: Clear EP1_ACK bit.	W	0
7:4	Reserved		R	-
3	EP4_NAKC	0: No effect. 1: Clear EP4_NAK bit.	W	0
2	EP3_NAKC	0: No effect. 1: Clear EP3_NAK bit.	W	0
1	EP2_NAKC	0: No effect. 1: Clear EP2_NAK bit.	W	0
0	EP1_NAKC	0: No effect. 1: Clear EP1_NAK bit.	W	0

10.9.4 USB Device Address Register (USB_ADDR)

Address Offset: 0x0C Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:7	Reserved		R	0
6:0	UADDR	USB device's address.	R/W	0

10.9.5 USB Configuration Register (USB_CFG)

Address offset: 0x10 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	VREG33_EN	Internal VREG33 output function. If VREG33_EN is disabled, VREG33 will be switched to IC_VDD. 0: Disable 1: Enable	R/W	1
30	PHY_EN	PHY transceiver function. PHY will be automatically disabled if entering sleep mode, deep-sleep mode, and deep-power down mode.0: Disable PHY transceiver function.1: Enable PHY transceiver function.	R/W	0

29	DPPU_EN	Internal D+ 1.5k pull-up resistor function. 0: Disable internal D+ pull-up resistor. 1: Enable internal D+ pull-up resistor.	R/W	0
28	SIE_EN	USB serial interface engine enable. 0: Disable USB SIE function. 1: Enable USB SIE function.	R/W	0
27	ESD_EN	USB ESD protection enable. 0: Disable ESD protection. 1: Enable ESD protection.	R/W	0
26	DIS_PDEN	Enable internal D+ and D - 175k pull-down resistor. 0: Disable. 1: Enable.	R/W	0
25:4	Reserved		R	0
3	EP4_DIR	Endpoint 4 IN/OUT direction setting. 0: EP4 only handshakes to IN token packet. 1: EP4 only handshakes to OUT token packet.	R/W	0
2	EP3_DIR	Endpoint 3 IN/OUT direction setting. 0: EP3 only handshakes to IN token packet. 1: EP3 only handshakes to OUT token packet.	R/W	0
1	EP2_DIR	Endpoint 2 IN/OUT direction setting. 0: EP2 only handshakes to IN token packet. 1: EP2 only handshakes to OUT token packet.	R/W	0
0	EP1_DIR	Endpoint 1 IN/OUT direction setting. 0: EP1 only handshakes to IN token packet. 1: EP1 only handshakes to OUT token packet.	R/W	0

10.9.6 USB Signal Control Register (USB_SGCTL)

Address offset: 0x14 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2	BUS_DRVEN	Enable to drive USB bus. 0: Not drive USB bus. Write operation to BUS_D+ or BUS_D- has no effect. 1: Drive USB bus. The D+/D- bus state can be set by set BUS_D+ and BUS_D	R/W	0
1	BUS_D+	USB D+ state 0: D+ state is low. 1: D+ state is high.	R/W	0
0	BUS_D-	USB D- state. 0: D- state is low. 1: D- state is high.	R/W	0

10.9.7 USB Endpoint 0 Control Register (USB_EP0CTL)

Address Offset: 0x18 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	ENDP_EN	 Enable Endpoint 0 function. 0: Disable endpoint 0 function. No handshake to endpoint0 SETUP/IN/ OUT token. 1: Enable endpoint 0 function. 	R/W	0

SN32F260 Series 32-Bit Cortex-M0 Micro-Controller

30:29	ENDP_STATE[1:0]	Endpoint Handshake State 00: NAK.	R/W	00
		01: ACK. For IN transaction, device will handshake data0/1 to IN		
		transaction. For OUT transaction, device will handshake ACK to OUT		
		token and the following data0/1. After IN/OUT ACK transaction		
		10/11 INOUT STALL Device will handshake STALL to both IN or OUT		
		token.		
		ENDP_STATE will automatically return to NAK state after USB Setup		
		transaction has completed.		
28	IN STALL EN	Enable EP0 to handshake STALL to EP0 IN transaction.		0
20		0: Disable	1.7.4.4	0
		1: ENADIE		
		handshake for EP0 OUT transaction depends on OUT_STALL_EN and		
		ENDP_STATE setting. This bit will be automatically cleared to '0' after		
		USB setup transaction has completed.		
27		Enable EP0 to handshake STALL to EP0 OUT transaction.		0
21	OUT_STALL_EN	0: Disable	R/VV	0
		1: Enable		
		DUI_STALL_EN enable is only effective to EPU DUI token. The EPU handshake state to EPO IN transaction depends on IN_STALL_EN and		
		ENDP STATE setting. This bit will be automatically cleared to '0' after		
		USB setup transaction has completed.		
26:7	Reserved	-	R	0
		Endpoint Byte Count		-
6:0	ENDP_CNT[6:0]	For IN transaction, the ENDP_CNT indicates the byte count to be	R/W	0
		uploaded to host. The maximum count for IN transaction should depend		
		on the bMaximumPacketSize0 declaration in USB Device Descriptor and		
		Calificities and a second to the ENDP CNT indicates the byte count received		
		from host.		
6:U	ENDP_CN1[6:0]	For IN transaction, the ENDP_CNT indicates the byte count to be uploaded to host. The maximum count for IN transaction should depend on the bMaximumPacketSize0 declaration in USB Device Descriptor and cannot exceed 64 bytes for USB FS device. For OUT transaction, the ENDP_CNT indicates the byte count received from host.	K/W	0

10.9.8 USB Endpoint n Control Register (USB_EPnCTL, n = 1 ~ 4)

Address Offset: 0x1C, 0x20, 0x24, 0x28 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	ENDP_EN	EPn function enable bit 0: Disable EPn function. No handshake to EPn IN/OUT token. 1: Enable EPn function.	R/W	0
30:29	ENDP_STATE[1:0]	Endpoint Handshake State 00: NAK For IN direction usage, device will handshake NAK to IN token. For OUT direction usage, device will handshake NAK to OUT token. 01: ACK: For IN direction usage, device will handshake data0/1 to IN token. For OUT direction usage, device will handshake ACK to OUT token and the following data0/1. After IN/OUT ACK transaction completes, the ENDP_STATE will automatically return to NAK state. 10/11: STALL For IN direction usage, device will handshake STALL to IN token. For OUT direction usage, device will handshake STALL to OUT token and the following data0/1.	R/W	0
28:7	Reserved	-	-	0
6:0	ENDP_CNT[6:0]	Endpoint Byte Count For IN direction usage, the ENDP_CNT indicates the byte count to be uploaded to host. For OUT direction usage, the ENDP_CNT indicates the byte count received from host.	R/W	0

10.9.9 USB Endpoint Data Toggle Register (USB_EPTOGGLE)

Address Offset: 0x3C Reset value: 0x0000 003F

Bit	Name	Description	Attribute	Reset
31:4	Reserved		R	0
3	EP4_DATA01	0: Clear EP4's toggle bit to DATA0. 1: HW sets toggle bit automatically.	R/W	1
2	EP3_DATA01	0: Clear EP3's toggle bit to DATA0. 1: HW sets toggle bit automatically.	R/W	1
1	EP2_DATA01	0: Clear EP2's toggle bit to DATA0. 1: HW sets toggle bit automatically.	R/W	1
0	EP1_DATA01	0: Clear EP1's toggle bit to DATA0. 1: HW sets toggle bit automatically.	R/W	1

10.9.10 USB Endpoint n Buffer Offset Register (USB_EPnBUFOS, n = 1 ~ 4)

Address Offset: 0x48, 0x4C, 0x50, 0x54 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:2	OFFSET[5:0]	The offset address for each endpoint data buffer. The effective offset address is: USB_SRAM address + {EPnBUFOS[7:2], 2'b00} Where USB_SRAM address = USB_BA + 0x100 For endpoint 0, the offset address is fixed as USB_SRAM address.	R/W	40, 80, C0, E0
1:0	Reserved		R	0

10.9.11 USB Frame Number Register (USB_FRMNO)

Address Offset: 0x60 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:11	Reserved		R	0
10:0	FRAME_NO[10:0]	The 11-bit frame number of the Start-Of-Frame(SOF) packet. This number is updated by H/W automatically when SOF packet is received.	R	0

10.9.12 USB PHY Parameter Register (USB_PHYPRM)

Address Offset: 0x64 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:26	PHY_PARAM[5:0]	The USB PHY parameter value. The suggested settings would be 0x20.	R/W	0
25:0	Reserved		R	0

10.9.13 USB PHY Parameter Register 2(USB_PHYPRM2)

Address Offset: 0x6C Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:15	Reserved		R	0
14:0	PHY_PARAM2[14:0]	The USB PHY parameter value.	R/W	0

10.9.14 USB PHY Parameter Register (USB_PS2CTL)

Address Offset: 0x70 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31	PS2ENB	PS/2 internal 5kohm pull-up resistor control bit.	R/W	0
30:4	Reserved		R	0
3	SDA	PS/2 SDA data buffer.	R/W	0
2	SCK	PS/2 SCK data buffer	R/W	0
1	SDAM	PS2/ SDA mode control bit.	R/W	0
0	SCKM	SCKM PS/2 SCK mode control bit.	R/W	0

10.9.15USB Read/Write Address Register (USB_RWADDR)

Address Offset: 0x78 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:2	RWADDR[5:0]	USB FIFO address to be read or written from/to USB FIFO.	R/W	0
1:0	Reserved		R	0

10.9.16USB Read/Write Data Register (USB_RWDATA)

Address Offset: 0x7C

Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:0	RWDATA[31:0]	Data to be read or written from/to USB FIFO.	R/W	0

10.9.17 USB Read/Write Status Register (USB_RWSTATUS)

Address Offset: 0x80 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:2	Reserved		R	0
1	R_STATUS	Read status of USB FIFO. *If F/W is to read the data from USB FIFO, set this bit as '1 '. When hardware has completed the read action (RWDATA content has been written by the new data read from USB FIFO with address RWADDR.) ,this bit is automatically cleared as '0' by hardware.	R/W	0
0	W_STATUS	Write status of USB FIFO. *If F/W is to write data into USB FIFO, set this bit as '1 '. When hardware has completed the write action (RWDATA content has been read as the new data, and the new data is written into USB FIFO with address RWADDR.), this bit is automatically cleared as '0' by hardware.	R/W	0

10.9.18USB Read/Write Address Register2 (USB_RWADDR2)

Address Offset: 0x84 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:8	Reserved		R	0
7:2	RWADDR[5:0]	USB FIFO address to be read or written from/to USB FIFO.	R/W	0
1:0	Reserved		R	0

10.9.19USB Read/Write Data Register2 (USB_RWDATA2)

Address Offset: 0x88 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:8	RWDATA[31:0]	Data to be read or written from/to USB FIFO.	R/W	0

10.9.20USB Read/Write Status Register 2(USB_RWSTATUS2)

Address Offset: 0x8C Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:2	Reserved		R	0
1	R_STATUS	Read status of USB FIFO. *If F/W is to read the data from USB FIFO, set this bit as '1 '. When hardware has completed the read action (RWDATA content has been written by the new data read from USB FIFO with address RWADDR.) ,this bit is automatically cleared as '0' by hardware.	R/W	0
0	W_STATUS	Write status of USB FIFO. *If F/W is to write data into USB FIFO, set this bit as '1 '. When hardware has completed the write action (RWDATA content has been read as the new data, and the new data is written into USB FIFO with address RWADDR.), this bit is automatically cleared as '0' by hardware.	R/W	0

11.1 OVERVIEW

SONiX 32-bit MCU integrated device feature in-system programmable (ISP) FLASH memory for convenient, upgradeable code storage. The FLASH memory may be programmed via the SONiX 32-bit MCU programming interface or by application code for maximum flexibility. SONiX 32-bit MCU provides security options at the disposal of the designer to prevent unauthorized access to information stored in FLASH memory.

- The MCU is stalled during Flash program and erase operations, although peripherals (Timers, WDT, I/O, PWM, etc.) remain active.
- > Watchdog timer should be cleared if enabled before the Flash write or erase operation.
- > The erase operation sets all the bits in the Flash page to logic 0.
- HW will hold system clock and automatically move out data from RAM and do programming, after programming finished, HW will release system clock and let MCU execute the next instruction.

11.2 EMBEDDED FLASH MEMORY

The Flash memory is organized as 32-bit wide memory cells that can be used for storing both code and data constants, and is located at a specific base address in the memory map of chip.

The high-performance Flash memory module in chip has the following key features:

Memory organization: the Flash memory is organized as a User ROM.

User ROM	Up to 32K × 8 bits divided into 512 pages of 64 Bytes
----------	---

The Flash interface implements instruction access and data access based on the AHB protocol. It implements the logic necessary to carry out Flash memory operations (Program/Erase). Program/Erase operations can be performed over the whole product voltage range.

11.3 FEATURES

- Read interface (32-bit)
- Flash Program / Erase operation
- Code Option includes Code Security (CS)

Write operations to the main memory block and the code options are managed by an embedded Flash Memory Controller (FMC). The high voltage needed for Program/Erase operations is internally generated. The main Flash memory can be read/write protected against different levels of Code Security (CS).

During a write operation to the Flash memory, any attempt to read the Flash memory will stall the bus. The read operation will proceed correctly once the write operation has completed. This means that code or data fetches cannot be made while a write/erase operation is ongoing.

For write and erase operations on the Flash memory, the IHRC will be turn ON by FMC. The Flash memory can be programmed and erased using ICP and ISP.

11.4 ORGANIZATION

BI	ock	Name	Base Address	Size (Byte)
		Page 0	0x00000000 ~ 0x0000003F	64
		Page 1	0x00000040 ~ 0x0000007F	64
	User ROM			
	30KB			
SN32F268			•	
ROM		Page 478	0x00007780 ~ 0x000077BF	64
32KB		Page 479	0x000077C0 ~ 0x000077FF	64
		Page 480	0x00007800 ~ 0x0000783F	64
	Boot Loader			
	2KB	•	•	
		Page 511	0x00007FC0 ~ 0x00007FFF	64

11.5 READ

The embedded Flash module can be addressed directly, as a common memory space. Any data read operation accesses the content of the Flash module through dedicated read senses and provides the requested data.

The read interface consists of a read controller on one side to access the Flash memory, and an AHB interface on the other side to interface with the CPU. The main task of the read interface is to generate the control signals to read from the Flash memory as required by the CPU.

11.6 PROGRAM/ERASE

The Flash memory erase operation can be performed at page level.

To ensure that there is no over-programming, the Flash programming and erase controller blocks are clocked by IHRC.

11.7 EMBEDDED BOOT LOADER

The embedded boot loader is used to reprogram the Flash memory using the USB interface.

11.8 FLASH MEMORY CONTROLLER (FMC)

The FMC handles the program and erase operations of the Flash memory.

11.8.1 CODE SECURITY (CS)

Code Security is a mechanism that allows the user to enable different levels of security in the system so that access to the on-chip Flash and use of the ISP can be restricted.

Note: Any Code Security change becomes effective only after the MCU has been Reboot.

User ROM		CS0	CS1	CS2	Description
	Read	0	Х	Х	
WRITER	Erase	0	O(*)	O(*)	(*) WRITER will change the CS level to CS0.
	Program	0	0	0	
	Read	0	0	0	
FW (Flash emulation)	Erase	0	0	0	
(inden enhanden)	Program	0	0	0	
	Read	0	Х	Х	
SWD	Erase	0	Х	Х	
	Program	0	Х	Х	

- Note: User may try to change security level from CS2 to CS0, or from CS1 to CS0. HW shall:
 1. Mass erase the User ROM first. User shall NOT execute this operation in debug mode, since the
 - SWD communication may fail during the mass erase procedure.
 - 2. Update security level.

11.8.2 PROGRAM FLASH MEMORY

The Flash memory can be programmed 1 page (64 bytes) at a time. CPU can program the main Flash memory by performing standard page write operations. The PG bit in the FLASH_CTRL register must be set. When the data is filled in the FLASH _DATA register, FMC preliminarily increases the data address, and checks the address to be programmed. If the following errors happen, the program operation is skipped and a warning is issued by the PGERR bit in FLASH_STATUS register.

- Start to Erase/Program and find that the address is over page boundary.
- Start to Erase/Program and find that the address is illegal. (>ROM size)
- Fill in Data and the address is already over Page Boundary.

The main Flash memory programming sequence in standard mode is as follows:

- 1. Set the PG bit in the FLASH_CTRL register.
- 2. Fill in the target address in the FLASH_ADDR register.
- 3. Wait for the BUSY bit to be reset.
- 4. Perform the continuous data write until all of the data had been filled in the FLASH_DATA register.
- 5. Wait for the BUSY bit to be reset.
- 6. Set the START bit to start programming.
- 7. Wait for the BUSY bit to be reset.
- 8. (Optional) Read the programmed value and verify.

11.8.3 ERASE

The Flash memory can be erased page by page.

11.8.3.1 PAGE ERASE

A page of the Flash memory can be erased using the Page Erase feature of the FMC. To erase a page, the procedure below should be followed:

- 1. Set the PER bit in the FLASH_CTRL register.
- 2. Program the FLASH_ADDR register to select a page to be erased
- 3. Set the STARTE bit in the FLASH_CTRL register..
- 4. Wait for the BUSY bit to be reset.
- 5. (Optional) Read the erased page and verify.

11.8.3.2 **MASS ERASE**

When the Flash memory read protection is changed from protected to unprotected, a Mass Erase of the User ROM is performed by HW before reprogramming the read protection option.

11.9 READ PROTECTION

The read protection is activated by setting the Code Security bytes in Code option.

When the Flash memory read protection is changed from protected to unprotected, a Mass Erase of the User ROM is performed by HW before reprogramming the read protection option.

11.10 HW CHECKSUM

HW checksum is the checksum of User ROM. If the read protection is enabled, the users can still readout the HW checksum through Writer or ISP AP.

11.11 FMC REGISTERS

Base Address: 0x4006 2000

11.11.1 Flash Low Power Control register (FLASH_LPCTRL)

Address offset: 0x00

Bit	Name	Description	Attribute	Reset
31:16	FMCKEY	FMC verify key. Read as 0. When writing to the register you must write 0x5AFA to FMCKEY, otherwise behavior of writing to the register is ignored.	W	0
15:4	Reserved		R	0
3:0	LPMODE[3:0]	Flash Low Power mode selection bit. 0000b: HCLK< 24MHz.	R/W	0000b
		0101b: HCLK≧ 24MHz.		
		Other: Reserved, and may cause unexpected error to force MCU enter Hardfault handler.		

11.11.2 Flash Status register (FLASH_STATUS)

Address offset: 0x04 Reset value: 0x0000 0000

Bit	Name	Description	Attribute	Reset
31:3	Reserved		R	0
2	ERR	 Programming error flag. 0: Read→No error. Write→Clear this flag. 1: Set by HW when Start to Erase/Program and find that the address is over page. boundary Start to Erase/Program and find that the address is illegal. (>ROM size) Fill in Data and the address is already over Page Boundary. 	R/W	0
1	Reserved		R	0
0	BUSY	 Busy flag. 0: Flash operation is not busy. 1: Flash operation is in progress. This is set on the beginning of a Flash operation and reset when the operation finishes or when an error occurs by HW. 	R	0

11.11.3 Flash Control register (FLASH_CTRL)

Address offset: 0x08

Bit	Name	Description	Attribute	Reset
31:7	Reserved		R	0
7	СНК	Checksum calculation chosen. This bit is set only by SW and reset when the BUSY bit resets.	R/W	0
6	START	Start Erase/Programming operation. 1: Triggers an Erase/Programming operation. This bit is set only by SW and resets when the BUSY bit resets. 0: Stop/Finish operation.	R/W	0
5:2	Reserved		R	0

11.11.4 Flash Data register (FLASH_DATA)

Address offset: 0x0C

For Page Program operations, this should be updated by SW to indicate the data to be programmed.

Bit	Name	Description	Attribute	Reset
31:0	DATA[31:0]	Data to be programmed.	R/W	0

11.11.5 Flash Address register (FLASH_ADDR)

Address offset: 0x10

The Flash address to be erased or programmed should be updated by SW, and the PG bit or PER bit shall be set before filling in the Flash address.

Note: Write access to this register is blocked when the BUSY bit in the FLASH_STATUS register is set.

Bit	Name	Description	Attribute	Reset
31:0	FAR[31:0]	Flash Address Choose the Flash address to erase when Page Erase is selected, or to program when Page Program is selected.	R/W	0

11.11.6 Flash Checksum register (FLASH_CHKSUM)

Address offset: 0x14

Bit	Name	Description	Attribute	Reset
31:16	Reserved		R	0
15:0	CHKSUM[15:0]	Checksum of User ROM.	R	0

12 SERIAL-WIRE DEBUG (SWD)

12.1 OVERVIEW

SWD functions are integrated into the ARM Cortex-M0. The ARM Cortex-M0 is configured to support up to four breakpoints and two watch points.

12.2 FEATURES

- Supports ARM Serial Wire Debug (SWD) mode.
- > Direct debug access to all memories, registers, and peripherals.
- No target resources are required for the debugging session.
- Up to four breakpoints.
- Up to two data watch points that can also be used as triggers.

12.3 PIN DESCRIPTION

Pin Name	Туре	Description	GPIO Configuration
SWCLK	I	Serial Wire Clock pin in SWD mode.	
SWDIO	I/O	Serial Wire Data Input/Output pin in SWD mode.	

12.4 DEBUG NOTE

12.4.1 LIMITATIONS

Debug mode changes the way in which reduced power modes work internal to the ARM Cortex-M0 CPU, and this ripples through the entire system. These differences mean that power measurements should not be made while debugging, the results will be higher than during normal operation in an application.

During a debugging session, the SysTick Timer is automatically stopped whenever the CPU is stopped. Other peripherals are not affected.

12.4.2 DEBUG RECOVERY

User code may disable SWD function in order to use P3.6 and P3.7 as GPIO, and may not debug by SWD function to debug or download FW any more.

SONiX provide Boot loader to check the status of P3.5 (BOOT pin) during boot procedure. If P3.5 is Low during Boot procedure, MCU will execute code in Boot loader instead of User code, so SWD function is not disabled.

Exit Boot loader, user code can still configure P3.5 as other functions such as GPIO.

* Note: We strongly recommanded NOT using BOOT pin as output pin to drive the LED, otherwise, the BOOT pin status may be low during boot procedure.

12.4.3 INTERNAL PULL-UP/DOWN RESITIORS on SWD PINS

To avoid any uncontrolled IO levels, the device embeds internal pull-up and pull-down resistor on the SWD input pins:

- SWDIO/JTMS: Internal pull-up
- SWCLK/JTCK: Internal pull-down

Once a SWD function is disabled by SW, the GPIO controller takes control again.

13 DEVELOPMENT TOOL

SONiX provides an Embedded ICE emulator system to offer 32-bit series MCU firmware development.

SONiX 32-bit series Embedded ICE Emulator System includes:

- SONiX 32-bit MCU Starter-Kit.
- SN-LINK-V3.0
- USB cable to provide communications between the SN-LINK-V3.0 and PC.
- IDE Tools (KEIL RVMDK)

SONiX 32-bit MCU Starter-Kit.

SN-LINK-V3.0

IDE Tools

SONiX 32-bit series Embedded ICE Emulator Feature:

- Target's Operating Voltage: 2.5V~5.5V.
- Up to 4 hardware break points.
- System clock rate up to 48MHz.
- Oscillator supports IHRC, ILRC

SONiX 32-bit series Embedded ICE Emulator Limitation:

 SWCLK and SWDIO pins are shared with GPIO pins. In embedded ICE mode, the shared GPIO function can't work.

SN-LINK-V3.0 is a high speed emulator for SONiX 32-bit MCU. It debugs and programs based on SWD protocol. In addition to debugger functions, the SN-LINK-V3.0 also may be used as a programmer to load firmware from PC to MCU for engineering production, even mass production.

SN-LINK-V3.0 communicates with SONiX 32-bit MCU through SWD interface. The pin definition of the Modular cable is as following:

13.2 SN32F268 STARTER-KIT

SONiX 32-bit MCU Starter-kit is an easy-development platform. It includes real chip and I/O connectors to input signal or drive extra device of user's application. It is a simple platform to develop application as target board not ready. The starter-kit can be replaced by target board because of integrated SWD debugger circuitry.

- JP3 : Micro USB connector.
- JP2 : USB Power connector.
- JP1 : VDDIO1 power connector: Choose the source of VDDIO1 (P1.0~P1.5) (5.0V/3.3V on board).
- J1 : GND connector.
- J2 : VDD connector.
- J3 : VREG33 output connector.
- U1 : SN32F268BF real chip.
- RESET button : External reset trigger source.
- D1 : For test LED.
- J8 : SN-LINK connector
- JP5 : Short to force MCU stay in Boot loader.

14 ELECTRICAL CHARACTERISTIC

14.1 ABSOLUTE MAXIMUM RATING

Supply voltage (Vdd)	- 0.3V ~ 5.5V
Input in voltage (Vin)	
Operating ambient temperature (Topr)	-40°C ~ + 85°C
Storage ambient temperature (Tstor)	

14.2 ELECTRICAL CHARACTERISTIC

All of voltages refer to Vss, Typical Vdd = 5.0V, Fosc = 12MHz, ambient temperature is 25° C unless otherwise note.									
PARAMETER	SYM.	DESCRIPTIO	N	MIN.	TYP.	MAX.	UNIT		
Operating Voltage	Vdd1	Supply voltage for core and external rail			5.0	5.5	V		
	Vdd2	USB mode			5.0	5.25	V		
VDD rise rate	V _{POR}	VDD rise rate to ensure internal powe	er-on reset	0.05	-	-	V/ms		
		Power Consumptio	n						
	ldd1	Normal mode	System clock = 48MHz [1][2[3]	-	12	-	mA		
Supply Current	ldd2	Sleep Mode	System clock = 32KHz [1][3][4]	-	160	230	uA		
	ldd3	Deep-sleep Mode	Vdd=5V [1][5]	-	5	16	uA		
Port Pins, RESET pin									
High-level input voltage	VIH		0.7Vdd	-	Vdd	V			
Low-level input voltage	VIL				-	0.3Vdd	V		
Input voltage	Vi				-	Vdd	V		
Output voltage	Vo				-	Vdd	V		
I/O port pull-up resistor	R _{PU}	Vin = Vss , Vdd = 5.0V			50	70	KΩ		
I/O port pull-down resistor (SWD pull-down pin)	R _{PD}	Vin = 5.0V		30	50	70	KΩ		
I/O High-level output source current	I _{он}	$V_{OP} = Vdd - 0.5V;$		6	10	-	mA		
I/O Low-level output sink current	I _{OL}	V _{OP} = Vss + 0.5V		12	20	-	mA		
		FLASH							
Endurance time	T _{EN}	Erase + Program		10K	*100K	-	Cycle		
Page erase time	T _{ME}	All User ROM memory.		-	5	-	ms		
Page Programming time	T _{PG}	1 -Page (64 bytes).		-	5	-	ms		
		MISC							
		Interrunt/Reset	LVD24	2.2	2.4	2.6	V		
Low Voltage Detector	LVD		LVD33	3.1	3.3	3.5	V		
3.3V Regulator Output voltage	Vreg33	VCC \geq 3.60V, IVREG33 < 60 mA		3.03	-	3.27	V		
IHRC Freq.	FIHRC	<i>T</i> =-25℃, Vdd=5V, USB function ON		11.97	12	12.03	MHz		

* Parameters with star mark are non-verified design reference.

[1] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled and VDD=5V.

[2] IHRC and ILRC are enabled.

[3] LVD and GPIO peripherals are enabled.

[4] IHRC is disabled, ILRC is enabled.

[5] All oscillators and analog blocks are turned off.

15 FLASH ROM PROGRAMMING PIN

	Programming Information of SN32F260 Series												
Chi	o Name	SN32F2	268F	SN32F	267J	SN32F	265J	SN32F2	2641J	SN32F26	64S/X	SN32F	263X
MP PF	RO Writer					Flash IC	: / JP3 F	Pin Assia	nment				
Cor	nector									1			
Number	Name	Number	Pin	Number	Pin	Number	Pin	Number	Pin	Number	Pin	Number	Pin
1	VDD	43, 44	VDD	40, 41	VDD	30, 31	VDD	25, 26	VDD	1, 2	VDD	1, 24	VDD
2	GND	48	VSS	45	VSS	3	VSS	2	VSS	6	VSS	15	VSS
3	CLK	5	P0.1	4	P0.1	5	P0.1	4	P0.1	8	P0.1	6	P0.1
4	CE												
5	PGM	26	P3.6	25	P3.6	21	P3.6	18	P3.6	20	P3.6	16	P3.6
6	OE	27	P3.7	26	P3.7	22	P3.7	19	P3.7	21	P3.7	17	P3.7
7	D1												
8	D0												
9	D3												
10	D2												
11	D5												
12	D4												
13	D7												
14	D6												
15	VDD												
16	-												
17	HLS												
18	RST												
19	-												
20	ALSB/PDB	6	P0.2	5	P0.2	6	P0.2	5	P0.2	9	P0.2	7	P0.2

16 PACKAGE INFORMATION

16.1 LQFP 48 PIN

DETAIL "A"

SIDE VIEW

SYMBOLS	Dim	nension in r	nm	Dimension in inch			
511110025	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α			1.60			0.063	
A1	0.05		0.15	0.002		0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.17	0.22	0.27	0.007	0.009	0.011	
с	0.09		0.20	0.004		0.008	
D		9.00 BSC			0.354 BSC		
D1		7.00 BSC		0.276 BSC			
E		9.00 BSC		0.354 BSC			
E1		7.00 BSC			0.276 BSC		
e		0.50 BSC			0.020 BSC		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1	1.00 REF			0.039 REF			
θ	0°	3.5°	7°	0°	3.5°	7°	

Notes:

1. CONTROLLING DIMENSION : MILLIMETER (mm)

2. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

SYMBOLS	Din	Dimension in mm			Dimension in inch			
511010025	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.80	0.90	0.028	0.031	0.035		
A1	0.00	0.02	0.05	0.000	0.001	0.002		
A3		0.203 REF		0.008 REF				
b	0.20	0.25	0.30	0.008	0.010	0.012		
D		6.5 BSC			0.256 BSC			
E		4.5 BSC		0.177 BSC				
e		0.4 BSC			0.016 BSC			
D2	5.00	5.10	5.20	0.197	0.201	0.205		
E2	3.00	3.10	3.20	0.118	0.122	0.126		
L	0.30	0.40	0.50	0.012	0.016	0.020		

Notes:

1. CONTROLLING DIMENSION : MILLIMETER (mm)

16.3 SOP 28 PIN

SIDE VIEW

DETAIL "A"

SYMBOLS	Din	nension in I	mm	Dimension in inch			
511010015	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А			2.65			0.104	
A1	0.10		0.30	0.004		0.011	
В	0.31	0.41	0.51	0.012	0.016	0.020	
D	17.70	18.20	18.70	0.697	0.716	0.736	
E		7.50 BSC		0.295 BSC			
е		1.27 BSC		0.050 BSC			
Н		10.30 BSC			405 BSC		
L	0.40		1.27	0.016		0.050	
θ	0°	4 ∘	8°	0 °	4 ∘	8°	

Notes:

1. CONTROLLING DIMENSION : mm

2. JEDEC OUTLINE : MO-119 AB

SI	DF	V	IFW	U

SYMBOLS	Din	nension in	mm	Dimension in inch			
511410025	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α			2.0			0.079	
A1	0.05			0.002			
B	0.22		0.38	0.009		0.015	
D	10.05	10.20	10.50	0.396	0.402	0.413	
E	5.00	5.30	5.60	0.197	0.209	0.220	
e		0.65 BSC.		0.026 BSC.			
Н	7.65	7.80	7.90	0.301	0.307	0.311	
L	0.55	0.80	1.05	0.022	0.031	0.041	
θ	0 °	4 °	8 °	0 °	4 °	8°	

Notes:

1. CONTROLLING DIMENSION : mm

2. JEDEC OUTLINE : MO-105 AH

16.5 QFN 28 PIN

SYMBOLS	Dir	nension in i	mm	Dimension in inch				
511110025	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
A	0.70	0.80	0.90	0.028	0.031	0.035		
A1	0.00	0.02	0.05	0.000	0.001	0.002		
A3		0.203 REF			0.008 REF			
b	0.15	0.20	0.25	0.006	0.008	0.010		
D		4.00 BSC			0.157 BSC			
E		4.00 BSC		0.157 BSC				
e		0.40 BSC			0.016 BSC	2		
D2	1.50	2.20	2.90	0.060	0.086	0.114		
E2	1.50	2.20	2.90	0.060	0.086	0.114		
L	0.30	0.40	0.50	0.012	0.016	0.020		

Notes:

1. CONTROLLING DIMENSION : MILLIMETER (mm)

16.6 QFN 33 PIN

SYMBOLS	Din	nension in I	mm	Dimension in inch			
511115025	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.80	0.90	0.028	0.031	0.035	
A1	0.00	0.02	0.05	0.000	0.000	0.002	
A3		0.20 REF		0.008 REF			
b	0.15	0.20	0.25	0.006	0.008	0.010	
D		4.00 BSC		0.157 BSC			
E		4.00 BSC		0.157 BSC			
e		0.40 BSC			0.016 BSC	;	
D2	2.00	2.45	2.9	0.080	0.096	0.114	
E2	2.00	2.45	2.9	0.080	0.096	0.114	
L	0.25	0.35	0.45	0.010	0.013	0.017	

Notes:

1. CONTROLLING DIMENSION : MILLIMETER (mm)

16.7 SSOP 24 PIN

TOP VIEW

SYMBOLS	Din	nension in I	mm	Dimension in inch			
SHUBOLS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А			1.75			0.069	
A1	0.10	0.15	0.25	0.004	0.006	0.010	
В	0.20		0.30	0.008		0.012	
D	8.55	8.65	8.75	0.337	0.341	0.344	
E	3.80	3.90	4.0	0.150	0.154	0.157	
е		0.635 BSC.		0.025 BSC.			
Н	5.80	6.00	6.20	0.228	0.236	0.244	
L	0.41	0.64	1.27	0.016	0.025	0.050	
θ	0 °		8 °	0 °		8 °	

Notes:

1. CONTROLLING DIMENSION : INCH

2. JEDEC OUTLINE : MO-137 AE

17 MARKING DEFINITION

17.1 INTRODUCTION

There are many different types in SONiX 32-bit MCU production line.

This note lists the marking definitions of all 32-bit MCU for order or obtaining information.

17.2 MARKING INDETIFICATION SYSTEM

17.3 MARKING EXAMPLE

Name	ROM Type	Device	Package	Temperature	Material
SN32F268FG	Flash memory	268	LQFP	-40°∁~85° ∁	Green Package
SN32F267JG	Flash memory	268	QFN	-40° C ~85 °℃	Green Package
SN32F265JG	Flash memory	268	QFN	-40°∁~85° ∁	Green Package
SN32F2641JG	Flash memory	268	QFN	-40°C ~85° ℃	Green Package
SN32F264SG	Flash memory	268	SOP	-40°C ~85° ℃	Green Package
SN32F264XG	Flash memory	268	SSOP	-40° C ~85 °℃	Green Package
SN32F263XG	Flash memory	268	SSOP	-40°C ~85° ℃	Green Package
SN32F268W	Flash memory	268	Wafer	-40° ℃ ~85°℃	-
SN32F268H	Flash memory	268	Dice	-40° C ~85° C	-

SONix

17.4 DATECODE SYSTEM

SONIX reserves the right to make change without further notice to any products herein to improve reliability, function or design. SONIX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. SONIX products are not designed, intended, or authorized for us as components in systems intended, for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SONIX product could create a situation where personal injury or death may occur. Should Buyer purchase or use SONIX products for any such unintended or unauthorized application. Buyer shall indemnify and hold SONIX and its officers , employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SONIX was negligent regarding the design or manufacture of the part.

Main Office:

Address: 10F-1, NO. 36, Taiyuan Street., Chupei City, Hsinchu, Taiwan R.O.C. Tel: 886-3-5600 888 Fax: 886-3-5600 889 **Taipei Office:** Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C.

Tel: 886-2-2759 1980 Fax: 886-2-2759 8180

Hong Kong Office:

Unit No.705,Level 7 Tower 1,Grand Central Plaza 138 Shatin Rural Committee Road, Shatin, New Territories, Hong Kong. Tel: 852-2723-8086 Fax: 852-2723-9179

Technical Support by Email:

Sn8fae@sonix.com.tw