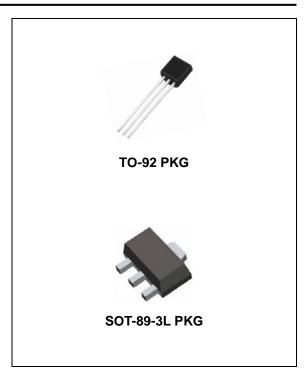
FEATURES


- Input Operating Voltage Range: 2.7V to 20V
- 1uA Typical Quiescent Current
- 2% Output Voltage Accuracy
- · Stable with 2.2uF MLCC
- Output Current is 250mA
- Short Circuit Protection

APPLICATION

- · Battery-Powered Equipment
- · Battery Powered Alarm Circuits
- · Portable Cameras and Video Recorders
- Microcontroller Power
- PDAs
- · Reference Voltage Sources
- · Consumer Products

The TJ75XXG series are family of CMOS low dropout Regulator with high input voltage VIN_MAX=20V. The load current is up to 250mA. The quiescent current (typical) is only 1uA. The TJ75XXG series can operate with low cost ceramic

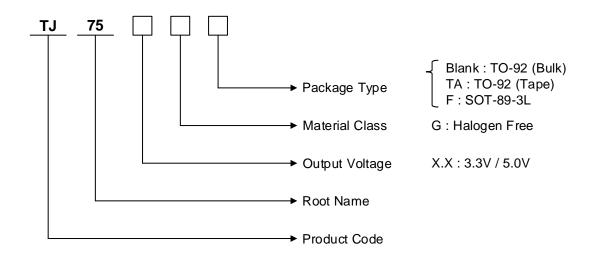
ORDERING INFORMATION

DEVICE	PACKAGE
TJ75XXG	TO-92 (Bulk)
TJ75XXGTA	TO-92 (Tape)
TJ75XXGF	SOT-89-3L

X.X = Output Voltage = 3.3, 5.0

ABSOLUTE MAXIMUM RATINGS

capacitor, 2.2uF MLCC capacitors.

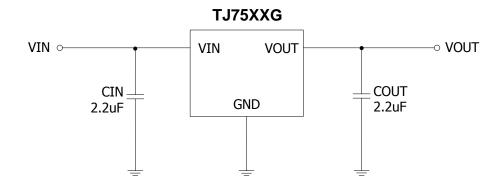

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Input Supply Voltage	Vin	-	28	V
Maximum Output Current	Іоит	-	500	mA
Lead Temperature (Soldering, 10 sec)	T _{SOL}		260	°C
Storage Temperature Range	T _{STG}	-65	150	°C
Operating Junction Temperature Range	T _{JOPR}	-40	125	°C

OPERATING RATINGS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Recommend Operating Input Voltage	Vin	-	20	V

ORDERING INFORMATION

VOUT	PACKAGE	ORDER NO.	DESCRIPTION	PACKAGE MARKING	STATUS
	TO-92 (Bulk)	TJ7533G	250mA, Fixed	7533	Contact Us
3.3V	TO-92 (Tape)	TJ7533GTA	250mA, Fixed 7533		Contact Us
	SOT-89-3L	TJ7533GF	250mA, Fixed	7533	Active
5.0V	TO-92 (Bulk)	TJ7550G	250mA, Fixed	7550	Active
	TO-92 (Tape)	TJ7550GTA	250mA, Fixed	7550	Contact Us
	SOT-89-3L	TJ7550GF	250mA, Fixed	7550	Active


PIN CONFIGURATION

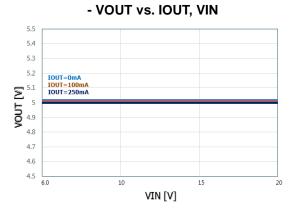
PIN DESCRIPTION

Pin No.	TO-92 / SOT-89-3L		
	NAME	FUNCTION	
1	GND	Ground	
2	VIN	Input Voltage	
3	VOUT	Output Voltage	

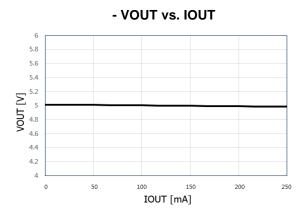
TYPICAL APPLICATION

ELECTRICAL CHARACTERISTICS(Note 1)

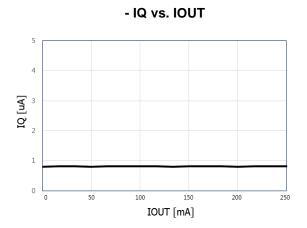
Unless otherwise specified all limits at Vin=Vout+1V (But Vin > 2.7V), TJ=25 $^{\circ}$ C, CIN=COUT=2.2uF


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage Range	V _{IN}		2.7		20	V
Output Voltage Accuracy	Vouт	IOUT=1mA	-2		2	%
Quiescent Current ^(Note2)	ΙQ	1mA < IOUT < 250mA		1	3	uA
Line Regulation	ΔV _{LINE}	3V < VIN < 20V (For VOUT < 2V) or VOUT+1V < VIN < 20V, IOUT=1mA		0.02	0.3	%/V
Load Regulation ^(Note3)	ΔVLoad	1mA < IOUT < 250mA, DC=5%		1	3	%
Dropout Voltage	VDROP	IOUT=160mA, VOUT drop 2%, VOUT=5V		400	700	mV
Power Supply Ripple Rejection	PSRR	VIN=6V, VOUT=5V, IOUT=1mA, f=100Hz		38		dB
OCP Threshold Level	Госр			700		mA
VOUT Temperature Coefficient	ТСуоит			100		ppm/℃

Note 1. Stresses listed as the absolute maximum ratings may cause permanent damage to the device. These are for stress ratings. Functional operating of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibly to affect device reliability.


Note 2. Ground current, or quiescent current, is the difference between input and output currents. It's defined by $I_{GND1} = I_{IN} - I_{OUT}$ under the given loading condition. The total current drawn from the supply is the sum of the load current plus the ground pin current.

Note 3. Load Regulation is measured using pulse techniques with duty cycle = 5%


TYPICAL OPERATING CHARACTERISTIC

VIN=6.0V to 20V, VOUT=5.0V @ IOUT=0A/100mA/250mA

VIN=6.0V, VOUT=5.0V @ IOUT=250mA per 10mA step

VIN=6.0V, VOUT=5.0V @ IOUT=250mA per 10mA step

VIN=6.0, VOUT=5.0V @ IOUT=250mA per 10mA step

APPLICATION INFORMATION

Maximum Output Current Capability

The TJ75XXG series can deliver a continuous current of 250mA over the full operating junction temperature range. However, the output current is limited by the restriction of power dissipation which differs from packages. A heat sink may be required depending on the maximum power dissipation and maximum ambient temperature of application. With respect to the applied package, the maximum output current of 250mA may be still undeliverable due to the restriction of the power dissipation of TJ75XXG series. Under all possible conditions, the junction temperature must be within the range specified under operating conditions. The temperatures over the device are given by:

$$T_C = T_A + P_D \times \theta_{CA}$$
 / $T_J = T_C + P_D \times \theta_{JC}$ / $T_J = T_A + P_D \times \theta_{JA}$

where T_J is the junction temperature, T_C is the case temperature, T_A is the ambient temperature, P_D is the total power dissipation of the device, θ_{CA} is the thermal resistance of case-to-ambient, θ_{JC} is the thermal resistance of junction-to-case, and θ_{JA} is the thermal resistance of junction to ambient.

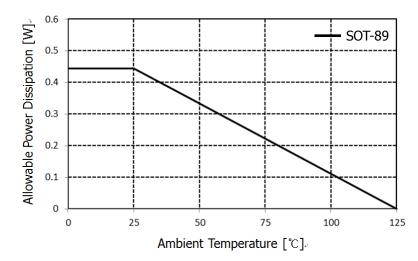
The total power dissipation of the device is given by:

$$P_D = P_{IN} - P_{OUT} = (V_{IN} \times I_{IN}) - (V_{OUT} \times I_{OUT})$$

= $(V_{IN} \times (I_{OUT} + I_{GND})) - (V_{OUT} \times I_{OUT}) = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$

where I_{GND} is the operating ground current of the device which is specified at the Electrical Characteristics. The maximum allowable temperature rise (T_{Rmax}) depends on the maximum ambient temperature (T_{Amax}) of the application, and the maximum allowable junction temperature (T_{Jmax}):

$$T_{Rmax} = T_{Jmax} - T_{Amax}$$


The maximum allowable value for junction-to-ambient thermal resistance, θ_{JA} , can be calculated using the formula:

$$\theta_{JA} = T_{Rmax} / P_D = (T_{Jmax} - T_{Amax}) / P_D$$

TJ75XXG series is available in TO-92 and SOT-89 package. The thermal resistance depends on amount of copper area or heat sink, and on air flow.

If proper cooling solution such as heat sink, copper plane area, air flow is applied, the maximum allowable power dissipation could be increased. However, if the ambient temperature is increased, the allowable power dissipation would be decreased.

Power Dissipation(P_D) vs. Ambient Temperature(T_A)

REVISION NOTICE

The description in this datasheet can be revised without any notice to describe its electrical characteristics properly.