#### High Sensitive Digital-Unipolar Hall Effect Sensor

#### Vinbelltech Limited



AH431, designed with Bipolar technology, includes on-chip Hall element voltage generator, a voltage regulator for operation with supply voltages of 3.8 to 40V, temperature compensation circuitry, small-signal amplifier, Schmitt trigger and a switch controlled current source circuit.

The sensor is a 2-wire device designed to respond to South poles, the output driver being a current source. The comparator compares the actual magnetic flux with the fixed reference values (switching points). The current source is switched on (high current consumption) or off (low current consumption). The active offset compensation leads to constant magnetic characteristics over supply voltage and temperature range.

AH431 offers a variety of packages, including TO-92S, SOT-23. All packages are RoHS compliant.

#### Features

- Digital current output
- Miniature construction
- High sensitivity of 80/60Gauss (typ.)
- Wide voltage range of 3.8 Vdc to 40 Vdc
- Highest ESD performance up to ±6 kV
- Temperature range of -40 °C to 125 °C

#### **Applications**

- BLDC Motor Commutation
- Flow sensor
- Position sensor
- Speed sensor
- Proximity sensor

## Package



3-pin TO92S

High Sensitive Digital-Unipolar Hall Effect Sensor

Vinbelltech Limited



#### Ordering information

| Part number | Package | Packing                     | Ambient, TA  |
|-------------|---------|-----------------------------|--------------|
| AH431UA     | TO92S   | Bulk, 1000 pieces/bag       | -40℃ to 125℃ |
| AH431SU     | SOT23   | Tape&Reel, 3000 pieces/reel | -40℃ to 125℃ |

#### Pin assignment

| Pin number | Name           | Function     |
|------------|----------------|--------------|
| 1          | VDD            | Power supply |
| 2          | GND            | Ground       |
| A1 1       | M. tana D. the |              |

#### Absolute Maximum Ratings

The absolute maximum value is the limiting value when the chip is applied, above which the chip can be damaged. Although the function of the chip is not necessarily damaged when the absolute maximum value is exceeded, the reliability of the chip may be affected if the absolute maximum value is exceeded for a certain time.

| Parameter                   | Symbol | Value   | Units |
|-----------------------------|--------|---------|-------|
| Supply voltage              | VDD    | 60      | V     |
| Operating temperature range | Ta     | -40~125 | °C    |
| Storage temperature range   | Ts     | -40~165 | °C    |

#### Electrical and magnetic characteristics (Ta=25°C, VDD =5.0V)

| Parameter  | Symbol               | Test Conditions | Min | Тур | Max | Units |
|------------|----------------------|-----------------|-----|-----|-----|-------|
| Electrical | characteristics      |                 |     |     |     |       |
| VDD        | Operating<br>voltage |                 | 3.8 |     | 40  | V     |
| IDDon      | Supply current       |                 |     | 18  |     | mA    |
| IDDoff     | Supply current       |                 |     | 7   |     | mA    |

#### High Sensitive Digital-Unipolar Hall Effect Sensor

Vinbelltech

Limited



| Tr                       | Output rising<br>time  |  |  |    | 1   | us    |
|--------------------------|------------------------|--|--|----|-----|-------|
| Tf                       | Output falling<br>time |  |  |    | 1.5 | us    |
| Magnetic characteristics |                        |  |  |    |     |       |
| Вор                      | Operate point          |  |  | 85 |     | Gauss |
| Brp                      | Release point          |  |  | 60 |     | Gauss |
| Bhys                     | Hysteresys             |  |  | 25 |     | Gauss |

#### Function diagram

AH431, designed with Bipolar technology, includes on-chip Hall element voltage generator, a voltage regulator for operation with supply voltages of 3.8 to 40V, temperature compensation circuitry, small-signal amplifier, Schmitt trigger and a switch controlled current source circuit.



High Sensitive Digital-Unipolar Hall Effect Sensor

# Vinbelltech Limited

**Limited** 

Vinbelltech

#### Pin orientation





**SOT23** 

#### **TO92S**

#### **Pin description**

| Name | Pin number | Description  |
|------|------------|--------------|
| VDD  | 1          | Power supply |
| GND  | 2          | Ground       |
| NC   | 3          | NC           |

Application example: VDD =5V

TO92S package, when the South pole is close to the marked side, the power supply output current is high current, and when away, the power supply output current is low current;

SOT23 package, when the North pole is close to the marked side, the output current of the power supply is high current, and when away, the output current of the power supply is low current.



High Sensitive Digital-Unipolar Hall Effect Sensor

Vinbelltech Limited



#### Output Behavior



#### AH431UA/SU output behavior

#### Application Circuits

The following figure shows a simple application with a 2-wire sensor. The current consumption can be detected by measuring the voltage over RL. For correct functioning of the sensor, the voltage between Vcc and GND must be a minimum of Vccmin. With the maximum current consumption of Icchimax, the maximum RL can be calculated as:



Case 1 of typical application circuit

#### Example 2-wire application circuit 2

For applications with disturbances on the supply line or radiated disturbances, a series resistor RV and a capacitor CP both placed close to the sensor are recommended. In this case, the maximum RL can be calculated as:

High Sensitive Digital-Unipolar Hall Effect Sensor

Vinbelltech Limited



$$R_{Lmax} x = \frac{V_{BATTmin} - V_{ccmin}}{Icchimax} - Rv$$

For example:  $RV = 100 \Omega$  and CP = 4.7 nF



Case 2 of typical application circui

#### Package dimensions

TO92S



## High Sensitive Digital-Unipolar Hall Effect Sensor



Vinbelltech

Limited

#### T092S dimensions

| symbol | Size (mm) |         | Size (in inches)    |          |  |
|--------|-----------|---------|---------------------|----------|--|
|        | minimum   | maximum | minimum             | maximum  |  |
| А      | 1.42      | 1.67    | 0.056               | 0.066    |  |
| A1     | 0.66      | 0.86    | 0.026               | 0.034    |  |
| b      | 0.35      | 0.56    | 0.014               | 0.022    |  |
| b1     | 0.4       | 0.55    | 0.016               | 0.022    |  |
| С      | 0.36      | 0.51    | 0.014               | 0.02     |  |
| D      | 3.9       | 4.2     | 0.154               | 0.165    |  |
| D1     | 2.97      | 3.27    | 0.117               | 0.129    |  |
| E      | 2.9       | 3.28    | 0.114               | 0.129    |  |
| е      | 1.270 TYP |         | 0.050 TYP           |          |  |
| e1     | 2.44      | 2.64    | 0.096               | 0.104    |  |
| L      | 13.5      | 15.5    | 0.531               | 0.61     |  |
| х      | 2.025TYP  |         | 0.080TYP            |          |  |
| у      | 1.545TYP  |         | 0.061TYP            |          |  |
| Z      | 0.50      | ОТҮР    | 0.020               | 0.020TYP |  |
| θ      | 45°       | ТҮР     | 45 <sup>°</sup> TYP |          |  |

#### SOT23



## High Sensitive Digital-Unipolar Hall Effect Sensor



Vinbelltech

Limited

#### S0T23 dimensions

| symbol | Size (mm) |         | Size (in inches) |         |  |
|--------|-----------|---------|------------------|---------|--|
|        | minimum   | maximum | minimum          | maximum |  |
| А      | 1.05      | 1.25    | 0.041            | 0.049   |  |
| A1     | 0         | 0.1     | 0                | 0.004   |  |
| A2     | 1.05      | 1.15    | 0.041            | 0.045   |  |
| b      | 0.3       | 0.5     | 0.012            | 0.02    |  |
| С      | 0. 100    | 0.2     | 0.004            | 0.008   |  |
| D      | 2.82      | 3.02    | 0.111            | 0.119   |  |
| E      | 1.5       | 1.7     | 0.059            | 0.067   |  |
| E1     | 2.65      | 2.95    | 0.104            | 0.116   |  |
| е      | 0.95      | О ТҮР   | 0.037 TYP        |         |  |
| e1     | 1.8       | 2       | 0.071            | 0.079   |  |
| L      | 0.3       | 0.6     | 0.012            | 0.024   |  |
| х      | 1.460TYP  |         | 0.057TYP         |         |  |
| У      | 0.800TYP  |         | 0.032TYP         |         |  |
| Z      | 0.60      | ОТҮР    | 0.024TYP         |         |  |
| θ      | 0°        | 8°      | 0°               | 8°      |  |

#### Copyright ©2018, Vinbelltech Limited

Vinbelltech Limited reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Vinbelltech Limited products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Vinbelltech Limited product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Vinbelltech Limited assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.