XL6003

400KHz 60V 2A Switching Current Boost LED Constant Current Driver

Features

- Wide 3.6V to 24V Input Voltage Range
- 0.22V FB adjustable LED drive current
- Directly drive 6 Series 1W LED at VIN>=12V
- Fixed 400KHz Switching Frequency
- Max. 2A Switching Current Capability
- Up to 92% efficiency
- Excellent line and load regulation
- EN PIN TTL shutdown capability
- Internal Optimize Power MOSFET
- Built in Soft-Start Function
- Built in Frequency Compensation
- Built in Thermal Shutdown Function
- Built in Current Limit Function
- Available in SOP8 package

Applications

- LED Lighting
- Boost constant current driver
- Monitor LED Backlighting
- 7' to 15' LCD Panels

General Description

The XL6003 regulator is fixed frequency PWM Boost (step-up) LED constant current driver, capable of driving Series 1W LED units with excellent line and load regulation. The regulator is simple to use because it includes internal frequency compensation and a fixed-frequency oscillator so that it requires a minimum number of external components to work.

The XL6003 could directly drive 6 Series 1W LED units at VIN>=12V.

The PWM control circuit is able to adjust the duty ratio linearly from 0 to 90%. An enable function, an over current protection function is built inside. An internal compensation block is built in to minimize external component count.

Figure 1. Package Type of XL6003

XL6003

Pin Configurations

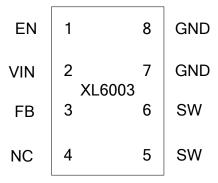


Figure 2. Pin Configuration of XL6003 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
1	EN	Enable Pin. Drive EN pin low to turn off the device, drive it high
1		to turn it on. Floating is default high.
	VIN	Supply Voltage Input Pin. XL6003 operates from a 3.6V to 24V
2		DC voltage. Bypass Vin to GND with a suitably large capacitor
		to eliminate noise on the input.
3	FB	Feedback Pin (FB). The feedback threshold voltage is 0.22V.
4	NC	No Connected.
5,6	SW	Power Switch Output Pin (SW). Output is the switch node that
		supplies power to the output.
7,8	GND	Ground Pin.

XL6003

Function Block

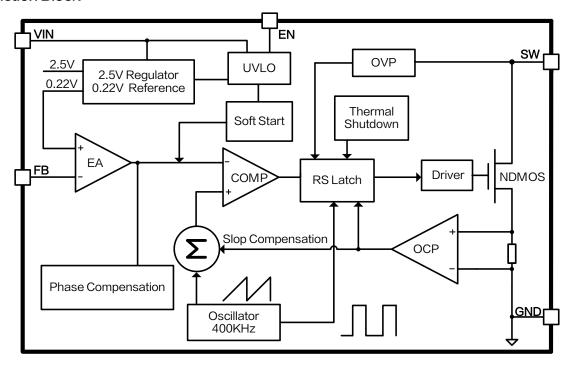


Figure 3. Function Block Diagram of XL6003

Typical Application Circuit

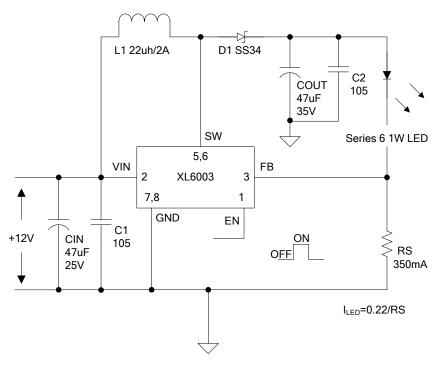


Figure 4. XL6003 Typical Application Circuit

XL6003

Ordering Information

Order Information	Marking ID	Package Type	Packing Type Supplied As
XL6003E1	XL6003E1	SOP8	2500/4000 Units on Tape & Reel

XLSEMI Pb-free products, as designated with "E1" suffix in the par number, are RoHS compliant.

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit	
Input Voltage	Vin	-0.3 to 26	V	
Feedback Pin Voltage	V_{FB}	−0.3 to Vin	V	
EN Pin Voltage	V _{EN}	−0.3 to Vin	V	
Output Switch Pin Voltage	V_{SW}	-0.3 to 60	V	
Power Dissipation	P₀	Internally limited	mW	
Thermal Resistance (SOP8)	Б	100	°C/W	
(Junction to Ambient, No Heatsink, Free Air)	R_{JA}	100	C/VV	
Operating Junction Temperature	TJ	-40 to 125	°C	
Storage Temperature	T _{STG} -65 to 150		°C	
Lead Temperature (Soldering, 10 sec)	T _{LEAD}	260	°C	
ESD (HBM)		>2000	V	

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

XL6003

XL6003 Electrical Characteristics

 $T_a = 25$ °C;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
System parameters test circuit figure4						
VFB	Feedback Voltage	Vin = 5V to 12V, Vout=24V Iload=100mA	209	220	231	mV
η	Efficiency	Vin=12V ,Vout=24V lout=0.3A	_	92	_	%

Electrical Characteristics (DC Parameters)

Vin = 12V, GND=0V, Vin & GND parallel connect a 100uf/50V capacitor; lout=100mA, T_a = 25°C; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	Vin		3.6		24	V
Shutdown Supply Current	ls	V _{EN} =0V		70	100	uA
Quiescent Supply Current	l q	V _{EN} =2V, V _{FB} =Vin		2.5	5	mA
Oscillator Frequency	Fosc		320	400	480	Khz
Switch Current Limit	l۱	V _{FB} =0V		2		А
Output Power NMOS	Rdson	Vin=12V, I _{sw} =2A		110	120	mohm
EN Pin Threshold	V_{EN}	High (Regulator ON) Low (Regulator OFF)		1.4 0.8		>
EN Pin Input Leakage	Ін	V _{EN} =2V (ON)		3	10	uA
Current	lL	V _{EN} =0V (OFF)		3	10	uA
Max. Duty Cycle	D _{мах}	V _{FB} =0V		90		%

XL6003

Typical System Application for VIN=5V to driver 3 x 1W series LED units

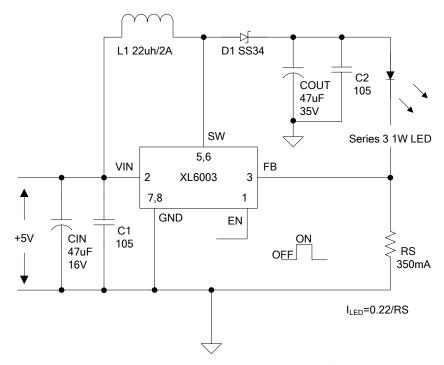


Figure 5. XL 6003 System Parameters Test Circuit (5V \sim 3 x 1W LED)

Typical System Application for VIN>=12V to driver 6 x 1W series LED units

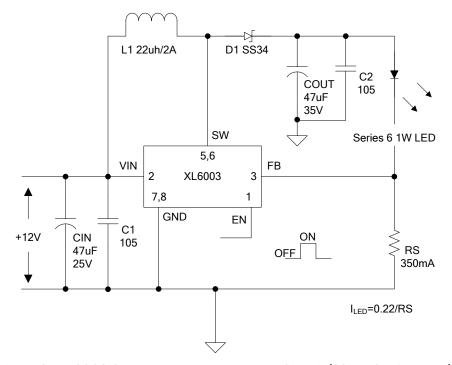


Figure 6. XL6003 System Parameters Test Circuit (12V ~ 6 x 1W LED)

XL6003

Typical System Application for VIN>=12V to driver 6 series x 28 parallel White LED Array

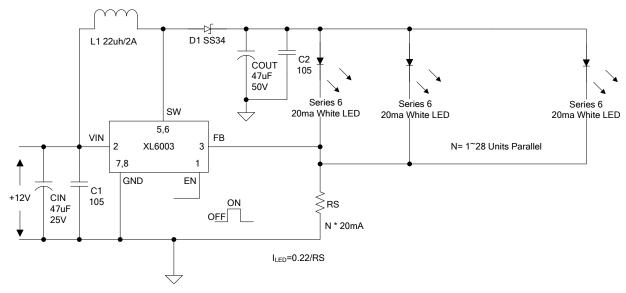


Figure 7. XL6003 System Parameters Test Circuit (12V ~ 6 x 28 White LED)

Typical System Application for SEPIC Buck-Boost LED Driver

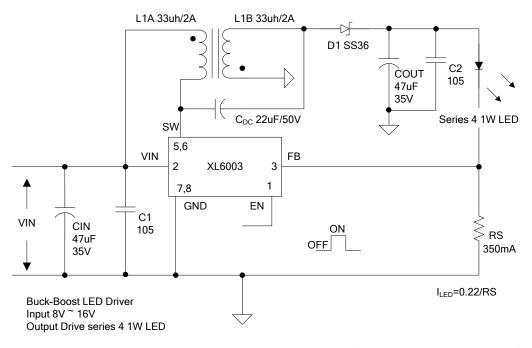


Figure 8. XL6003 System Parameters Test Circuit (Buck-Boost LED Driver)

XL6003

Typical System Application for VIN>=12V to driver 6 x 1W series LED units With Dimming Function

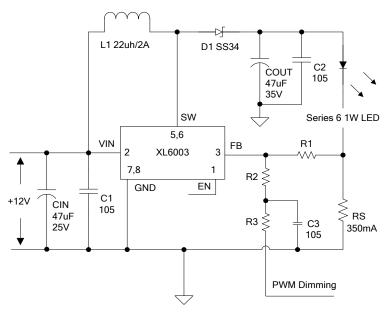


Figure 9. XL6003 System Parameters Test Circuit (12V ~ 6 x 1W LED with Dimming Function)

Typical System Application (LED Open Protection)

LED Open Protection function can be used in typical system application with external components. The output voltage can be limited in a suitable value by choosing different zener diode when the output LED open. the zener diode voltage choosed by output led voltage's 1.3 times.

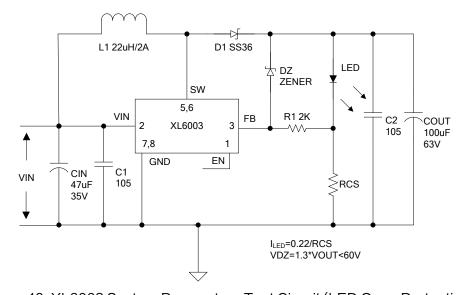
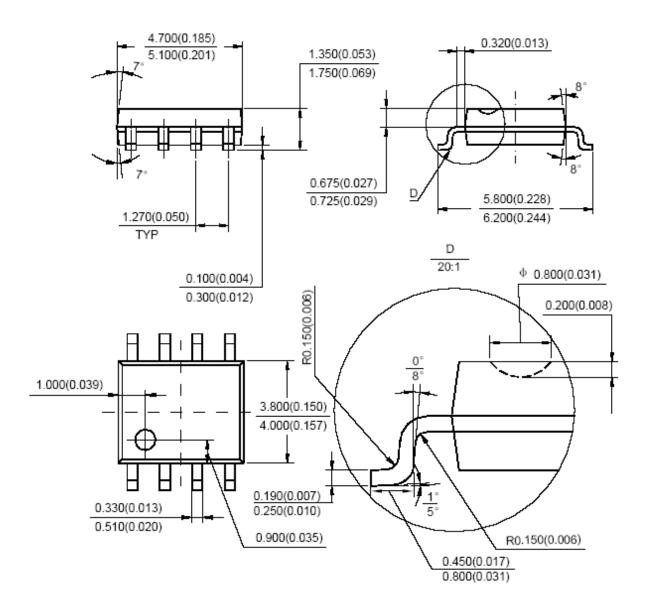


Figure 10. XL6003 System Parameters Test Circuit (LED Open Protection)



XL6003

Package Information

SOP8 Mechanical Dimensions

SOIC-8 Unit: mm(inch)

XL6003

Important Notice

XLSEMI reserve the right to make modifications, enhancements, improvements, corrections or other changes without notice at any time. XLSEMI does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. XLSEMI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using XLSEMI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. XLSEMI warrants performance of its products to the specifications applicable at the time of sale, in accordance with the warranty in XLSEMI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent XLSEMI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

For the latest product information, go to www.xlsemi.com.