

18V Input, Dual 6A and 3A Synchronous Buck with Sync Pin

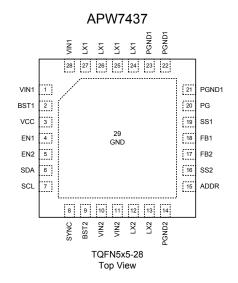
Features

- Wide Input Voltage from 4.5V to 18V.
- 6A/3A Output Current on Channel 1/2.
- Low I_q=150uA (typ.) per channel supply to improve Light Load Efficiency at Sync off.
- Typical 0.6V +1%Internal Reference Voltage.
- Easy to use I²C interface
 - Programmable VOUT by control VFB Reference Voltage from 408~790.5mV in 1.5mV steps.
 - Adjustable Frequency in 4 steps, 500kHz, 600kHz, 800kHz and 1.2MHz
 - Adjustable Voltage Step Slew Rate in 3 steps,
 - 0.75mV/uSec, 1.5mV/uSec, 3mV/uSec
 - Selectable PSM/PWM mode or PWM mode only
 - Support 8 sets of Slave address by an resistor.
 - Independent salve address for each channel.
 - I²C Control Function: Soft-Enable and Soft-Reset.
- Sync Pin Allows Synchronization to an External Clock from 500kHz to 2MHz.
- Optimized Upper and Lower MOSFETs R_{DS_on} for max Efficiency:
 - N-CH MOSFET (28 mW) for CH1 High Side.
 - N-CH MOSFET (16 mW) for CH1 Low Side.
 - N-CH MOSFET (70 mW) for CH2 High Side.
 - N-CH MOSFET (25 mW) for CH2 Low Side.
- Independent External Soft-Start Control for each channel.
- Separate EN and for Easy Sequencing.
- PG pin indicating both Channels Power Good.
- Built in OVP, UVP, Current Limit and OTP.
- Low Cost TQFN5x5-28 package.
- Lead Free and Green Devices Available (RoHS Compliant)

Applications

- Digital Subscriber Line
- Passive Optical Network
- G.fast
- Set-Top-Box

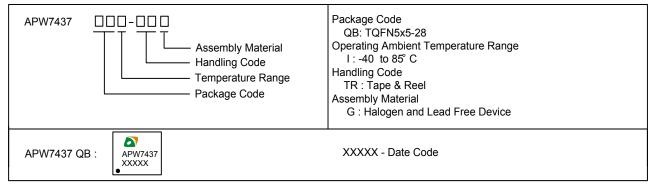
General Description


The APW7437 is a two-channel synchronous mode PWM converter with 6A continuous current capability for one channel and 3A continuous current capability for the other one.

Each channel of the APW7437 has independent enable and soft-start control pins, and It also allows the two regulators to start together by using the same enable signal and the same soft-start capacitor. In addition to changing the switching frequency through the I2C function, the APW7437 can also synchronize the switching frequency with an external clock frequency through the SYNC pin.

The APW7437 also provides a 180-degree phase shifting technique to minimize switching noise. The output voltage of each channel can be adjusted using an external resistor divider or by adjusting the internal reference voltage through I2C. Other features include UVP, current limit , and OTP.

The APW7437 is available in a TQFN5x5-28 package with small size and excellent thermal capacity.


Pin Configuration

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
V _{IN}	VIN1 to PGND1, VIN2 to PGND2	-0.3 ~ 21	V
V _{BST}	BST1 to PGND1, BST2 to PGND2	-0.3 ~ 26	V
V _{LX}	LX1 to PGND1, LX2 to PGND2	-1 ~ 20	V
V _{I/O}	VCC, ADDR, PG, SYNC, FB1/2, EN1/2, SS1/2, SCL, SDA to GND	-0.3 ~ 6	V
V _{GND}	PGND1, PGND2 to GND	-0.3 ~ 0.3	V
P _D	Power Dissipation	Internally Limited	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C
	Maximum Lead Soldering Temperature(10 Seconds)	260	°C

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter	Typical Value	Unit
PD	Power Dissipation @ $T_A = 25 \degree C$ (Note 2)	2.78	W
θ_{JA}	Junction-to-Ambient Resistance in free air (Note 2)	36	°C/W
θ _{JC}	Junction-to-Ambient Case in free air (Note 2)	5	°C/W
θ_{JA}	Junction-to-Ambient Resistance (Note 3)	23.6	°C/W

Note 2: θ_{JA} is measured on 4 layers test board following the EIA/JESD51-7.

Note 3: θ_{JA} is measured on Anpec evaluation board in free air.

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Range	Unit
V _{IN}	VIN supply voltage		4.5 ~ 18	V
V _{EN}	EN1 and EN2 input voltage		0~5	V
V _{OUT}	Converter output voltage		0.68 ~ 5	V
	Converter output current	CH1	0~6	A
I _{OUT}		CH2	0 ~ 3	
F _{SYNC}	Synchronization Frequency Range	·	500 ~ 2000	kHz
T _A	Ambient Temperature		-40 ~ 85	°C
TJ	Junction Temperature	-40 ~ 125	°C	
Note 4: Refer to t	he typical application circuit.			

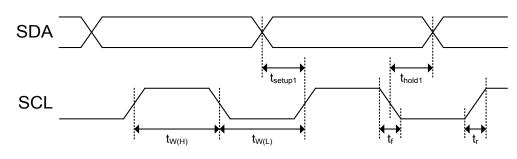
Copyright©ANPEC Electronic Corp.

Electrical Characteristics

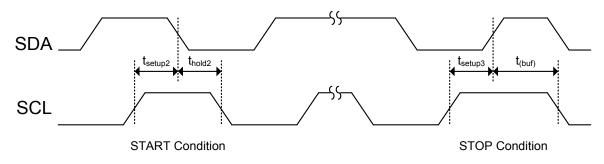
Unless otherwise specified, these specifications apply over V_{IN}=12V, V_{EN}=5V. Typical values are at T_J=25°C.

Symbol	Baramatar	Tost condition	Sp	ecificat	ion	Unit
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
SUPPLY	CURRENT (for CH1 and CH2)					
$I_{\rm VIN}$	VIN Input Current	V _{FB} =1V, LX=NC	-	150	-	uA
I_{VIN_STB}	VIN Standby Current	CH1 and CH2 Soft_EN=1, EN=5V	-	-	40	uA
$\mathbf{I}_{\text{VIN}_\text{SHDN}}$	VIN Shutdown Current	EN=GND	-	-	5	uA
POWER-0	DN RESET (for CH1 and CH2)	I				
V_{POR}	VCC POR Threshold Voltage	VCC Rising	-	4.3	-	V
$V_{\text{POR_Hys}}$	VCC POR Hysteresis Voltage	VCC Falling	-	0.4	-	V
T_{DB_POR}	VCC POR On Debounce Time		-	50	-	us
T_{D_POR}	VCC POR On Delay Time	When VCC POR On to LX Switching	-	600	-	us
EN Thres	hold (for CH1 and CH2)	- F		1		
$V_{\text{EN}_{\text{H}}}$	EN Input Threshold High Voltage		1.2	-	-	V
V_{EN_L}	EN Input Threshold Low Voltage		-	-	0.5	V
T_{DB_EN}	EN Turn On Debounce Time		-	20	-	us
$T_{D_{EN}}$	EN Turn On Delay Time	When EN High to LX Switching	-	700	-	us
I _{EN}	EN Input Current	V _{EN} =5.5V	-	-	0.1	uA
REFEREN	ICE VOLTAGE (for CH1 and CH2)					
1	Reference Voltage	T_J =25°C, I ² C V _{REF} setting = Default	594	600	606	mV
	Load Regulation VOUT1=1V/0~6A, VOUT2=1V/0~3A		-	0.4	-	%
	Transition Slew Rate I ² C V _{REF} setting changed, TSR[1:0]=00		-	0.75	-	mV/u
	Reference Voltage Differential		-	1.5	-	mV
	Reference Voltage DNL		-1	-	1	LSB
	Reference Voltage INL		-4	-	4	LSB
V _{vcc}	VCC Regulator Output Voltage	I _{VCC} =0A	-	5	-	V
	VCC Load Regulation	I _{VCC} =10mA (Note 5)	-	3	-	%
	VCC Maximum Current	When VCC drop to 4.75V	40	-	-	mA
I _{ss}	Soft Start Current		8	10	12	uA
R_{DIS}	Internal Discharge Resistor		-	100	-	Ω
OSCILLA	TOR AND SYNCHRONIZATION FREQU	JENCY				
Fosc	Oscillator Frequency	I ² C configurable by Reg0x02[1:0]=01 (default)	-	600	-	kHz
	Frequency Accuracy	T _J =-40~125°C	-20	-	+20	%
	Minimum on Time		-	70	-	ns
	Maximum Duty		-	90	-	%
$V_{\text{SYNC}_{\text{H}}}$	SYNC Input Threshold High Voltage		2.5	-	-	V
V_{SYNC_L}	SYNC Input Threshold Low Voltage		-	-	0.8	V
	Allowable SYNC Duty Cycle		40	-	60	%

Note 5: Internal use only.

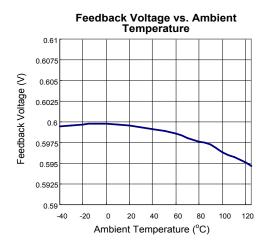

Electrical Characteristics (Cont.) Unless otherwise specified, these specifications apply over V_{IN}=12V, V_{EN}=5V. Typical values are at T_J=25°C.

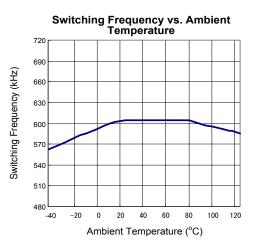
Symbol	Parameter	Test condition	S	pecificatio	on	Unit	
бутвоі	Parameter	lest condition	Min.	Тур.	Max.		
POWER MO	DSFET (for CH1 and CH2)	, ,		•		1	
	CH1 High Side MOSFET Resistance		-	28	-	mΩ	
	CH1 Low Side MOSFET Resistance		-	16	-	mΩ	
	CH2 High Side MOSFET Resistance		-	70	-	mΩ	
	CH2 Low Side MOSFET Resistance		-	25	-	mΩ	
	High Side MOSFET Leakage Current	V _{EN} =0V, V _{LX} =GND	-	1	-	μA	
	Low Side MOSFET Leakage Current	V _{EN} =0V, V _{LX} =VIN	-	1	-	μA	
	Dead Time		-	10	-	ns	
BOOTSTRA	AP POWER (for CH1 and CH2)			<u>I</u>	1	1	
V _{BST-LX_POR}	BST to LX Output POR Voltage	V _{BST} - V _{LX}	-	3.3	-	V	
R _{BST}	BST Switch On Resistance	V _{EN} =5V, LX=-0.1V, BST Source 10mA	-	10	-	Ω	
	BST Leakage Current	V _{BST-LX} =5.5V	-	-	0.1	μA	
PHASE SH	IFT and ADDRESS						
	CH1 and CH2 Phase Shift		-	180	-	degree	
ADDR	Address Latch Time		-	600	-	us	
I _{ADDR_LEAK}	ADDR Leakage Current		-	-	0.1	uA	
PROTECTI	ONS (for CH1 and CH2)	, ,		•			
		For CH1	-	9	-		
I _{LIM}	High Side MOSFET current-limit	For CH2	-	5	-	— A	
	Over-temperature Trip Point		-	150	-	°C	
	Over-temperature Hysteresis		-	30	-	°C	
	FB Over Voltage Protection		120	125	130	%V _{REF}	
	FB Over Voltage Protection Hysteresis		-	5	-	%V _{REF}	
	Under Voltage Protection		40	50	60	%V _{REF}	
	Hiccup Count Times		-	8	-	t _{ss}	
POWER- G		11		1	1	1	
	PG Low Level Threshold	VOUT Rising, PG goes High	-	90	-	%	
	PG Low Level Hysteresis	VOUT Falling, PG goes Low	-	5	-	%	
	PG High Level Threshold	VOUT Rising, PG goes Low	120	125	130	%	
	PG High Level Hysteresis	VOUT Falling, PG goes High	-	5	-	%	
	PG Leakage Current	V _{PG} =5V	-	0.1	1	uA	
	PG Sink Capability	When PG pin pull low, PG sink 50mA	-	-	0.8	V	
	PG goes High Debounce Time		-	20	-	us	

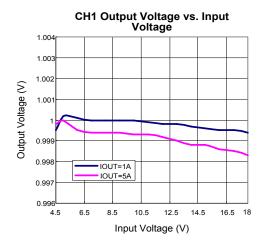


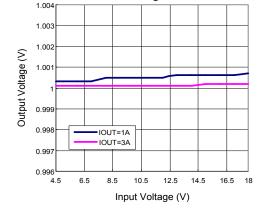
Electrical Characteristics (Cont.) Timing characteristics for I²C Interface signals over recommended operating conditions (unless otherwise noted).

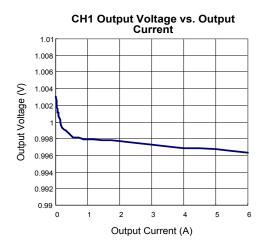
0 milion	Demonster	Fast Sp	eed Plus	Fast Spee	d	Unit
Symbol	Parameter	Min.	Max.	Min.	Max.	
f _{SCL}	Frequency, SCL	-	1	-	0.4	MHz
t _{W(H)}	Pulse Duration, SCL High	260	-	600	-	ns
$t_{W(L)}$	Pulse Duration, SCL Low	500	-	1300	-	ns
t _r	Rise Time, SCL and SDA	-	120	20+0.1 C _L (pF)	300	ns
t _f	Fall Time, SCL and SDA	-	120	20+0.1 C _L (pF)	300	ns
t _{setup1}	Setup Time, SCL to SDA	-	-	100	-	ns
t _{hold1}	Hold Time, SCL to SDA	-	-	100	-	ns
$t_{(buf)}$	Bus Free Time Between Stop and Start Condition	500	-	1300	-	ns
t _{setup2}	Setup Time, SCL to Start Condition	-	-	600	-	ns
t _{hold2}	Hold Time, Start condition to SCL	-	-	600	-	ns
t _{setup3}	Setup Time, SCL to Stop Condition	-	-	600	-	ns
CL	Load Capacitance for Each Bus Line	-	-	-	400	pF

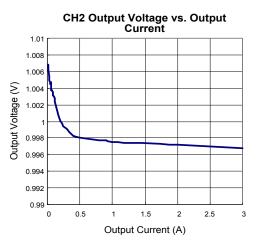

SDA and SCL Timing

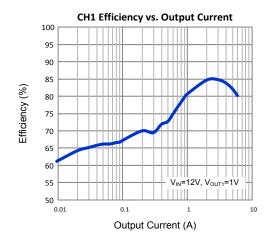


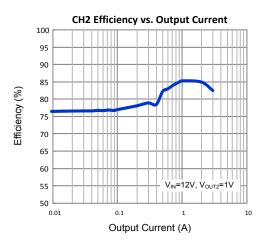

START and STOP Condition Timing




Typical Operating Characteristics

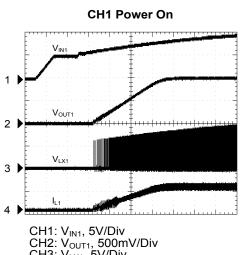


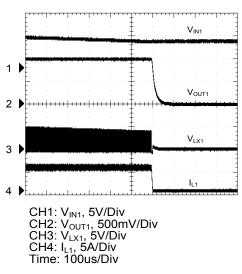




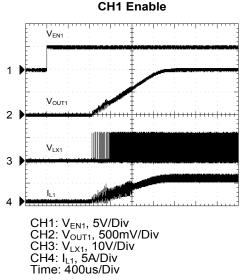
CH2 Output Voltage vs. Input Voltage

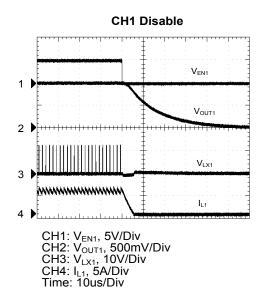
Typical Operating Characteristics (Cont.)





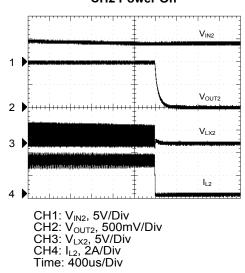
OperatingWaveforms

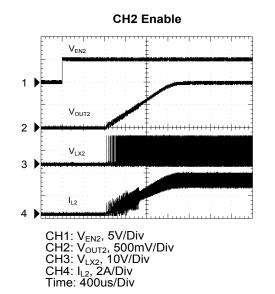

Refer to the typical application circuit. The test condition is V_{IN} =12V, T_a = 25°C unless otherwise specified.



CH2: V_{0VI7} , 50/Div CH2: V_{0UT1} , 500mV/Div CH3: V_{LX1} , 5V/Div CH4: I_{L1} , 5A/Div Time: 400us/Div

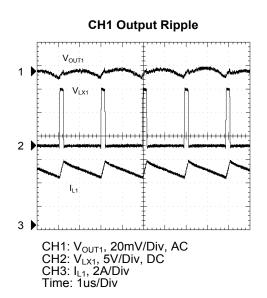
CH1 Power Off

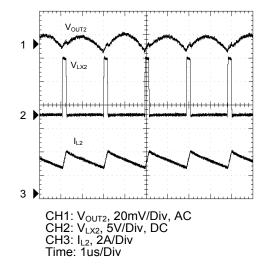

Copyright©ANPEC Electronic Corp. Rev. A.10 - Apr., 2021

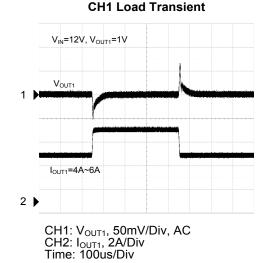

OperatingWaveforms (Cont.)

Refer to the typical application circuit. The test condition is V_{IN} =12V, T_{A} = 25°C unless otherwise specified.

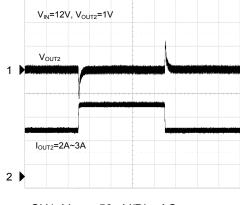
CH2 Power Off





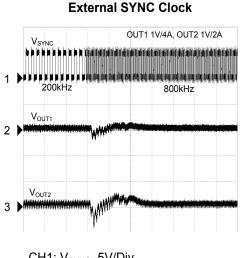

OperatingWaveforms (Cont.)

Refer to the typical application circuit. The test condition is V_{IN} =12V, T_A = 25°C unless otherwise specified.

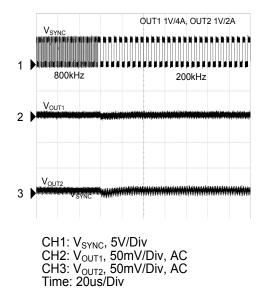


CH2 Output Ripple

CH2 Load Transient



CH1: V_{OUT1} , 50mV/Div, AC CH2: I_{OUT2} , 1A/Div Time: 100us/Div

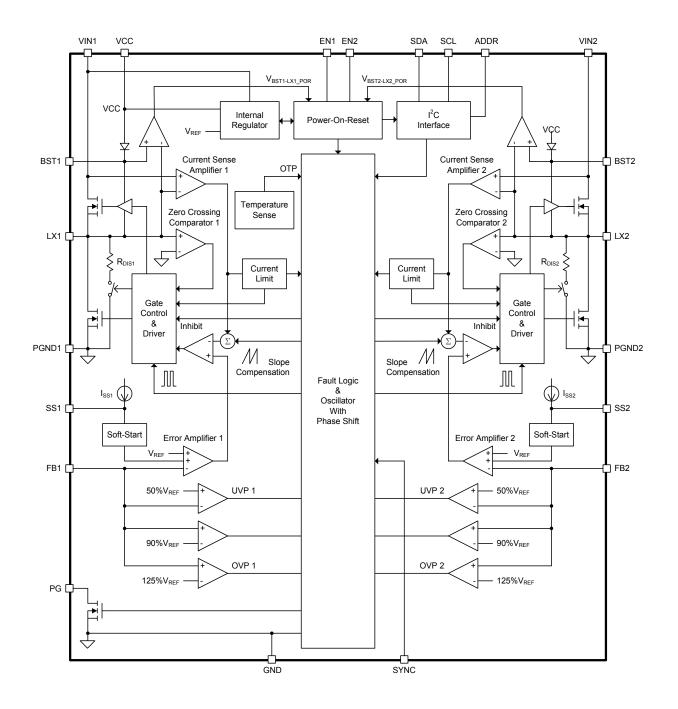


OperatingWaveforms (Cont.)

Refer to the typical application circuit. The test condition is V_{IN} =12V, T_A = 25°C unless otherwise specified.

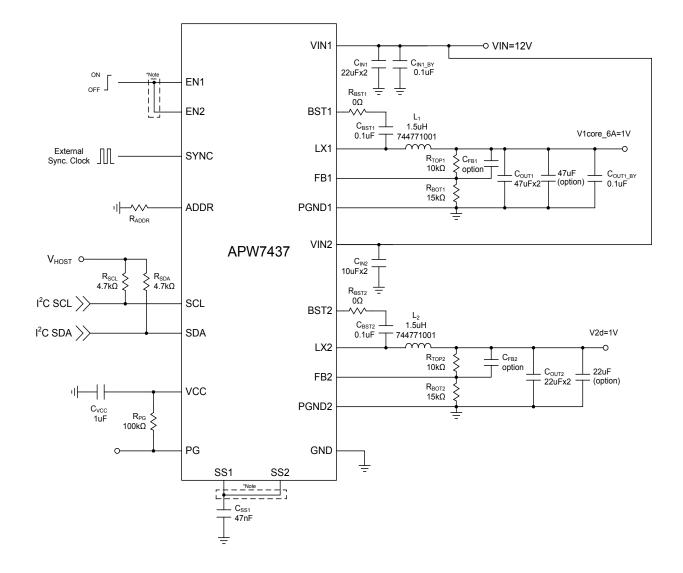
CH1: V_{SYNC} , 5V/Div CH2: V_{OUT1} , 50mV/Div, AC CH3: V_{OUT2} , 50mV/Div, AC Time: 20us/Div

External SYNC Clock



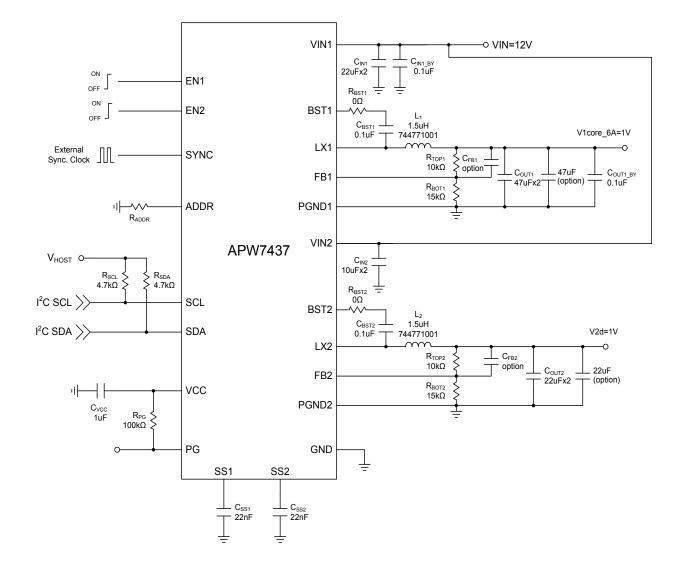
Pin Descriptions

	PIN	FUNCTION
NO.	NAME	
1, 28	VIN1	CH1 Power Input Pin. VIN1 supplies the power to the CH1 buck converter.
2	BST1	CH1 High-Side Gate Driver Supply Voltage Input Pin. A 0.1uF X5R ceramic capacitor is connected from this pin to the LX1 pin to provide a bootstrap voltage for the gate driver to drive the upper MOSFET.
3	VCC	Internal Regulator Output Pin. The VCC pin is the output of an internal 5V regulator for internal control circuitry. It is recommended to connect a 1uF X5R capacitor from the VCC pin to ground to ensure stability and regulation. Do not apply an external load to VCC.
4	EN1	CH1 Enable Input Pin. Drive EN1 high to turn the CH1 converter on and drive it low to turn it off. The EN1 pin cannot be left floating.
5	EN2	CH2 Enable Input Pin. Drive EN2 high to turn the CH2 converter on and drive it low to turn it off. The EN2 pin cannot be left floating.
6	SDA	I ² C Data Connection Pin.
7	SCL	I ² C Clock Signal Pin.
8	SYNC	Synchronous Clock Input Pin. Input an external 500kHz to 2MHz clock signal to this pin for synchronization function. If the SYNC pin is not used, it should be grounded.
9	BST1	CH2 High-Side Gate Driver Supply Voltage Input Pin. A 0.1uF X5R ceramic capacitor is connected from this pin to the LX2 pin to provide a bootstrap voltage for the gate driver to drive the upper MOSFET.
10, 11	VIN2	CH2 Power Input Pin. VIN2 supplies the power to the CH2 buck converter.
12, 13	LX2	CH2 Power Switching Output. These pins are the junction of the high side power MOSFET and the low side power MOSFET. Connect these pins to the output inductor.
14	PGND2	CH2 Power Ground. This pin must be connected directly to the GND plane of the PCB using low inductance vias.
15	ADDR	Slave Address Setting Pin. Connect a resistor from ADDR to ground to set the slave address.
16	SS2	CH2 Soft-start Time Setting Pin. Connect a Capacitor to GND to set the soft start interval.
17	FB2	CH2 Output Feedback Pin. FB2 senses the output voltage of channel2 and regulates it. Connect the resistor divider from the output through FB2 to the ground to set the output voltage.
18	FB1	CH1 Output Feedback Pin. FB1 senses the output voltage of channel1 and regulates it. Connect the resistor divider from the output through FB1 to the ground to set the output voltage.
19	SS1	CH1 Soft-start Time Setting Pin. Connect a Capacitor to GND to set the soft-start interval.
20	PG	Output Power Good Indicator Pin. This pin is an open-drain device; connect a pull-up resistor to an external supply voltage for the PG function.
21, 22, 23	PGND1	CH1 Power Ground. These pins must be connected directly to the GND plane of the PCB using low inductance vias.
24, 25, 26 27	LX1	CH1 Power Switching Output. These pins are the junction of the high side power MOSFET and the low side power MOSFET. Connect these pins to the output inductor.
29	GND	The Ground of IC.



Block Diagram

Typical Application Circuit 1 : VOUT1/2 power up simultaneously


Components Selection for Different Output Voltage

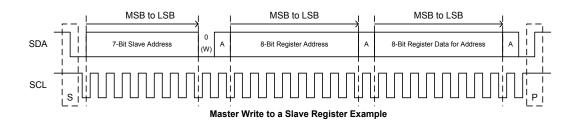
Application	Channel	VIN (V)	VOUT (V)	IOUT (A)	C _{IN} (F)	L (H)	C _{OUT} (F)	R _{τοΡ} (Ω)	R _{вот} (Ω)	C _{FB} (F)
1	1	12	1	0 ~ 6A	22u × 2	1.5u	47u × 2	10k	15k	option
I	2	12	1	0 ~ 3A	10u × 2	1.5u	22u × 2	10k	15k	option
2	1	12	3.3	0 ~ 6A	22u × 2	3.5u	47u × 2	68k	15k	160p
2	2	12	3.3	0 ~ 3A	10u × 2	3.5u	22u × 2	68k	15k	160p
3	1	12	5	0 ~ 6A	22u × 2	4.7u	47u × 2	110k	15k	39p
	2	12	3.3	0 ~ 3A	10u × 2	3.5u	22u × 2	68k	15k	160p

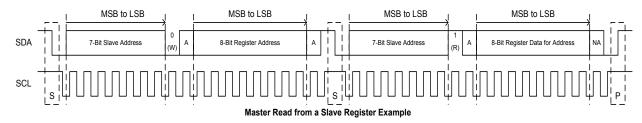
Note: If the SS1 and SS2 connect to the same capacitor, then the CH1 & CH2 I²C soft-Enable command can't be used.

Typical Application Circuit 2 : Independent Channel Operation

Components Selection for Different Output Voltage

Application	Channel	VIN (V)	VOUT (V)	IOUT (A)	C _{IN} (F)	L (H)	С _{оит} (F)	R _{τοΡ} (Ω)	R _{вот} (Ω)	C _{FB} (F)
	1	12	1	0 ~ 6A	22u × 2	1.5u	47u × 2	10k	15k	option
	2	12	1	0 ~ 3A	10u × 2	1.5u	22u × 2	10k	15k	option
2	1	12	3.3	0 ~ 6A	22u × 2	3.5u	47u × 2	68k	15k	160p
2	2	12	3.3	0 ~ 3A	10u × 2	3.5u	22u × 2	68k	15k	160p
2	1	12	5	0 ~ 6A	22u × 2	4.7u	47u × 2	110k	15k	39p
3	2	12	3.3	0 ~ 3A	10u × 2	3.5u	22u × 2	68k	15k	160p




I²C Programming

The APW7437's I^2C Slave Addresses are two hard-coded 7 bit address as below table. The APW7437 supports the following write and read protocol and contains 16 registers.

RADDR	Affected	7-bits				E	Bits			
(kΩ)	Channel	Slave Address	D7	D6	D5	D4	D3	D2	D1	D0(R/W)
0	CH1	0x0A	0	0	0	1	0	1	0	x
0	CH2	0x0B	0	0	0	1	0	1	1	x
5.1	CH1	0x1A	0	0	1	1	0	1	0	x
5.1	CH2	0x1B	0	0	1	1	0	1	1	x
12	CH1	0x2A	0	1	0	1	0	1	0	x
12	CH2	0x2B	0	1	0	1	0	1	1	x
24	CH1	0x3A	0	1	1	1	0	1	0	x
24	CH2	0x3B	0	1	1	1	0	1	1	x
47	CH1	0x4A	1	0	0	1	0	1	0	x
47	CH2	0x4B	1	0	0	1	0	1	1	x
100	CH1	0x5A	1	0	1	1	0	1	0	x
100	CH2	0x5B	1	0	1	1	0	1	1	x
200	CH1	0x6A	1	1	0	1	0	1	0	x
200	CH2	0x6B	1	1	0	1	0	1	1	x
400	CH1	0x7A	1	1	1	1	0	1	0	x
400	CH2	0x7B	1	1	1	1	0	1	1	x

ADDR Resistor Configuration Mapping to I2C Slave Address

(S=START, P=STOP, A=ACK from Slave, NA=Non-ACK)

I²C Registers Index

Affected Channel	Slave Address	Register Address	Register Name	Read/Write	Default Value
		0x00	CH1 Feedback Reference Voltage Setting Register (1.5mV/LSB)	R/W	0x80 (600mV)
		0x01	CH1 Fault Flag Register (OVP1, UVP1, CL1, OTP)	R	0x00
	0x0A ~ 0x7A	0x0A ~ 0x7A CH1 Soft Enable (Normal, Standby) (Note)		R/W	0x00 (Normal)
CH1	(Configured by	0x04	CH1 Transition Slew Rate (0.75mV/us, 1.5mV/us, 3mV/us)	R/W	0x00 (0.75mV/us)
	R_{ADDR1} and R_{ADDR2})	0x05	CH1 Force PWM Mode (PSM/PWM, Force PWM)	R/W	0x00 (PSM/PWM)
		0x2F	Clear CH1 Fault Flag to Default	w	0x00
		0x3F	CH1 Soft Reset (Clear All CH1 Register to Default Value)	W	0x00
		0x00	CH2 Feedback Reference Voltage Setting Register (1.5mV/LSB)	R/W	0x80 (600mV)
		0x01	CH2 Fault Flag Register (OVP2, UVP2, CL2, OTP)	R	0x00
	0x0B ~ 0x7B	0x03	CH2 Soft Enable (Normal, Standby) _('Note)	R/W	0x00 (Normal)
CH2	(Configured by	0x04	CH2 Transition Slew Rate (0.75mV/us, 1.5mV/us, 3mV/us)	R/W	0x00 (0.75mV/us)
	R_{ADDR1} and R_{ADDR2})	0x05	CH2 Force PWM Mode (PSM/PWM, Force PWM)	R/W	0x00 (PSM/PWM)
		0x2F	Clear CH2 Fault Flag to Default	W	0x00
		0x3F	CH2 Soft Reset (Clear All CH2 Register to Default Value)	W	0x00
	0.00.0.70	0x02	Frequency Setting Register (D[1:0]=500kHz, 600kHz , 800kHz, 1200kHz)	R/W	0x01 (600kHz)
Commer	0x0A ~ 0x7A or 0x0B ~ 0x7B	0x06	IC Info. (Vender ID=D[7:4], Version ID=D[3:0])	R	0xAA
Common	(Configured by	0x07	IC ID	R	0x37
	R_{ADDR1} and R_{ADDR2})	0x7F	Soft Reset All (Clear All CH1, CH2 and Common Register to Default Value)	W	0x00

Note: If the SS1 and SS2 connect to the same capacitor, then the CH1 & CH2 I²C soft-Enable command can't be used.

The CH1 I²C Registers Programming

Register Name		CH1 Feedback Reference Voltage Setting Register									
Affected Channel				С	H1						
Slave Address			0x0A ~ 0x	7A (Configure	ed by R _{ADDR1} a	ind R _{ADDR2})					
Register Address				0×	:00						
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1									
Bit Name		CH1_VREF_SET									
Read/Write		R/W									
Power On Default	1	0	0	0	0	0	0	0			
Bit Name				Bit De	finition						
CH1_VREF_SET	0x01: CH1_V 0x02: CH1_V 0x7E: CH1_V 0x7F: CH1_ 0x80: CH1_V 0x81: CH1_V 0x82: CH1_V 0xFD: CH1_ 0xFD: CH1_	$V_{REF} = 409.5n$ $V_{REF} = 411.0m$ $V_{REF} = 597.0n$ $V_{REF} = 598.5n$ $V_{REF} = 600.0n$ $V_{REF} = 601.5n$ $V_{REF} = 603.0n$ $V_{REF} = 787.5r$ $V_{REF} = 789.0r$	nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VOU nV (CH1_VO nV (CH1_VOU	JT=0.6825V) JT=0.685V) JT=0.995V) JT=0.9975V) JT=1.000V) (JT=1.0025V) JT=1.005V) UT=1.3125V UT=1.3125V)	Default))						

Note 6: Refer to the typical application circuit.

Register Name			С	H1 Fault Flag	Register					
Affected Channel				CH1						
Slave Address		$0x0A \sim 0x7A$ (Configured by R_{ADDR1} and R_{ADDR2})								
Register Address		0x01								
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	OVP1 UVP1 CL1								
Read/Write	-	R R R R								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name			<u>`</u>	Bit Definit	ion			·		
OVP1	CH1 Output	Over Voltage	Protection Flag	g.						
UVP1	CH1 Output	Jnder Voltage	e Protection Fla	ag.						
CL1	CH1 Current	CH1 Current Limit Flag.								
OTP	Over Temper	Over Temperature Protection Flag.								

Note: The Fault Flag will be cleared when: 1. Clear fault function enable. 2. Both of EN pins are "L".

Register Name				CH1 Soft Er	nable					
Affected Channel		CH1								
Slave Address		0x0A ~ 0x7A (Configured by R _{ADDR1} and R _{ADDR2})								
Register Address				0x03						
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	Soft_								
Read/Write	-	R/								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name			<u>`</u>	Bit Definit	ion	·				
EN1_soft	0: Normal Ope 1: Standby Mo (The CH1 out (If the SS1 and be used.)	ode. out voltage de	own to 0V, but	Internal Regul capacitor, the	ator and I ² C I n the CH1 & 0	Function stil CH2 I ² C sof	l existing.) t-Enable co	ommand can't		

Register Name			CH	11 Transition S	lew Rate					
Affected Channel		CH1								
Slave Address		$0x0A \sim 0x7A$ (Configured by R_{ADDR1} and R_{ADDR2})								
Register Address				0x04						
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	TSR1								
Read/Write	-	R/W								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name			·	Bit Definition	on	·				
	00: 0.75mV/us	s. (Default)						-		
TSR1	01: 1.5mV/us									
13K1	10: 3mV/us									
	11: Reversed									

Register Name			C	H1 Force PW	/ Mode					
Affected Channel		CH1								
Slave Address		0x0A ~ 0x7A (Configured by R _{ADDR1} and R _{ADDR2})								
Register Address		0x05								
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	FPW								
Read/Write	-	-	-	-	-	-	-	R/W		
Power On Default	0	0	0	0	0	0	0	0		
Bit Name			•	Bit Definition	on					
FPWM1		0: PSM/PWM mode automatic selection. (Default) 1: Force PWM Mode								

Register Name			С	H1 Fault Flag	Register					
Affected Channel				CH1						
Slave Address		$0x0A \sim 0x7A$ (Configured by R_{ADDR1} and R_{ADDR2})								
Register Address		0x01								
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	OVP1 UVP1 CL1 OTF								
Read/Write	-	R R R R R								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name				Bit Definiti	on					
OVP1	CH1 Output O	ver Voltage P	rotection Flag							
UVP1	CH1 Output U	nder Voltage	Protection Fla	g.						
CL1	CH1 Current L	CH1 Current Limit Flag.								
OTP	Over Tempera	ture Protectio	n Flag.							

Register Name		CH1 Soft Reset									
Affected Channel		0x0A ~ 0x7A (Configured by R _{ADDR1} and R _{ADDR2})									
Slave Address		0x0A									
Register Address		0x3F									
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0									
Bit Name		RST1									
Read/Write				W							
Power On Default	0	0	0	0	0	0	0	0			
Bit Name		Bit Definition									
RST1	Write any data	Write any data into the register to clear all CH1 Registers to default value.									

The CH2 I²C Registers Programming

Register Name			CH2 Feedba	ack Reference	e Voltage Set	ting Register					
Affected Channel				CI	H2						
Slave Address			0x0B ~ 0x	7B (Configure	ed by R _{ADDR1} a	and R _{ADDR2})					
Register Address				0x	:00						
Data Bit	D7										
Bit Name		CH2_VREF_SET									
Read/Write		R/W									
Power On Default	1	1 0 0 0 0 0 0 0									
Bit Name		Bit Definition									
CH2_VREF_SET	0x01: CH2_\ 0x02: CH2_\ 0x7E: CH2_\ 0x7F: CH2_\ 0x80: CH2_\ 0x81: CH2_\ 0x82: CH2_\ 0xFD: CH2_ 0xFE: CH2_	$V_{REF} = 408.0 \text{m}$ $V_{REF} = 409.5 \text{m}$ $V_{REF} = 409.5 \text{m}$ $V_{REF} = 597.0 \text{m}$ $V_{REF} = 598.5 \text{m}$ $V_{REF} = 600.0 \text{m}$ $V_{REF} = 601.5 \text{m}$ $V_{REF} = 603.0 \text{m}$ $V_{REF} = 787.5 \text{m}$ $V_{REF} = 789.0 \text{m}$ $V_{REF} = 790.5 \text{m}$	nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU nV (CH2_VOU	JT=0.6825V) JT=0.685V) JT=0.995V) JT=0.9975V) JT=1.000V) (JT=1.0025V) JT=1.005V) UT=1.3125V) UT=1.3125V)	Default))						

Register Name			С	H2 Fault Flag	Register					
Affected Channel				CH2						
Slave Address		$0x0B \sim 0x7B$ (Configured by R_{ADDR1} and R_{ADDR2})								
Register Address				0x01						
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1								
Bit Name	-	OVP2 UVP2 CL2								
Read/Write	-	R R R R								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name				Bit Definit	ion					
OVP2	CH2 Output O	ver Voltage P	Protection Flag	•						
UVP2	CH2 Output U	nder Voltage	Protection Fla	g.						
CL2	CH2 Current L	CH2 Current Limit Flag.								
OTP	Over Temperature Protection Flag.									

Note: The Fault Flag will be cleared when: 1.Clear fault function enable. 2. Both of EN pins are "L".

Register Name				CH2 Soft Er	nable					
Affected Channel		CH2								
Slave Address		0x0B ~ 0x7B (Configured by R _{ADDR1} and R _{ADDR2})								
Register Address				0x03						
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	Soft_								
Read/Write	-	R								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name			·	Bit Definit	ion	·				
EN2_soft		ode. out voltage de	ult) own to 0V, but ct to the same							

Register Name			CH	12 Transition S	lew Rate					
Affected Channel		CH2								
Slave Address		0x0B ~ 0x7B (Configured by R _{ADDR1} and R _{ADDR2})								
Register Address		0x04								
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name	-	TSR2								
Read/Write	-	R/W								
Power On Default	0	0	0	0	0	0	0	0		
Bit Name				Bit Definition	on					
	00: 0.75mV/us	s. (Default)								
TSR2	01: 1.5mV/us									
1382	10: 3mV/us	10: 3mV/us								
	11: Reversed									

Register Name			C	H2 Force PW	/ Mode					
Affected Channel		CH2								
Slave Address		0x0B ~ 0x7B (Configured by R _{ADDR1} and R _{ADDR2})								
Register Address		0x05								
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D								
Bit Name	-	FPV								
Read/Write	-	-	-	-	-	-	-	R/W		
Power On Default	0	0	0	0	0	0	0	0		
Bit Name				Bit Definition	on					
FPWM2		0: PSM/PWM mode automatic selection. (Default) 1: Force PWM Mode								

Register Name			Clear	CH2 Fault Fla	g to Default					
Affected Channel		CH2								
Slave Address		$0x0B \sim 0x7B$ (Configured by R_{ADDR1} and R_{ADDR2})								
Register Address				0x2F						
Data Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Bit Name				Clear_Flag	g2					
Read/Write				W						
Power On Default	0	0	0	0	0	0	0	0		
Bit Name		Bit Definition								
Clear_Flag2	Write any data	Write any data into the register to clear all CH2 Fault Flag to default value.								

Register Name		CH2 Soft Reset						
Affected Channel				CH2				
Slave Address		0x0B ~ 0x7B (Configured by R_{ADDR1} and R_{ADDR2})						
Register Address		0x3F						
Data Bit	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name		RST2						
Read/Write		W						
Power On Default	0	0	0	0	0	0	0	0
Bit Name		Bit Definition						
RST2	Write any data	a into the regis	ster to clear all	CH2 Registers	s to default va	alue.		

The CH2 I²C Registers Programming

Register Name		Frequency Setting Register						
Affected Channel		CH1 & CH2						
Slave Address		$0x0A \sim 0x7A$ or $0x0B \sim 0x7B$ (Configured by R_{ADDR1} and R_{ADDR2})						
Register Address				0	(02			
Data Bit	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name	-	-	-	-	-	-	FREC	SET
Read/Write	-	-	-	-	-	-	R	/W
Power On Default	0	0	0	0	0	0	0	1
Bit Name		Bit Definition						
FREQ_SET	00: 500kHz 01: 600kHz. 10: 800kHz 11: 1200kHz	00: 500kHz 01: 600kHz. (Default) 10: 800kHz						

Register Name		Soft Reset All						
Affected Channel		CH1 & CH2						
Slave Address		0x0A ~	0x7A or 0x0B	~ 0x7B (Config	gured by R _{ADD}	R1 and RADD	_{R2})	
Register Address		0x7F						
Data Bit	D7	D6	D5	D4	D3	D2	D1	D0
Bit Name		RST_ALL						
Read/Write		W						
Power On Default	0	0	0	0	0	0	0	0
Bit Name	Bit Definition							
RST_ALL	Write any data	a into the regis	ster to clear all	CH1, CH2 and	d Common Re	egisters to d	lefault value	э.

Function Descriptions

MainControl Loop

The IC uses current mode control to regulate the output voltage.

The output voltage is measured at FB through a resistor divider and amplified by an internal transconductance error amplifier.

The output of the transconductance error amplifier is compared to the switching current to adjust the duty cycle to control the output voltage.

The benefit of current mode control is the ability to quickly adjust the duty cycle as the output current increases rapidly for fast load transient response.

VCC Regulator

The IC provides an internal 5V VCC regulator for the internal control circuitry. The VCC regulator is powered by the VIN1 voltage. It is recommended to connect a 1uF X5R capacitor from the VCC pin to ground to ensure stability and regulation.

VCC Power-On Reset(POR)

VCC is an internal voltage regulator that is activated when the IC is powered by VIN1.

The APW7437 continuously monitors the voltage on the VCC pin. The soft start is activated when the VCC voltage and the EN voltage are above their respective POR thresholds.

VCC POR is used to protect the IC from erroneous operation with insufficient VCC voltage. VCC POR also has hysteresis to resist ripple on the VCC voltage.

Enable/ShutdownControls

The IC provides two independent enable controls(EN1 and EN2) for the two converters(CH1 and CH2).

The on and off of CH1 and CH2 are controlled by EN1 and EN2, respectively. Drive ENx high to turn the respective converter on and drive ENx low to turn the respective converter off.

External frequency synchronization

Although the switching frequency of the IC is fixed at 600kHz, it can also change the switching frequency via the SYNC pin.

When an external clock is input to the SYNC pin, the IC can synchronize the switching frequency of the converter with the external clock frequency, which can be synchronized from 500 Hz to 2 MHz.

Single Frequency and Phase shift

The IC has two converters that use the same operating frequency to avoid beat frequencies and improve noise immunity.

But it also increases input current and EMI, so more input capacitors and additional EMI components must be used. Therefore, the IC provides a 180-degree phase shifting technique that allows two high-side power MOSFETs to be turned on at different times to eliminate these defects.

It will greatly reduce the RMS input current, resulting in less input capacitance, EMI components and input losses.

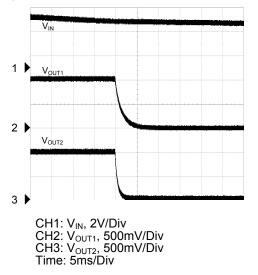
External Soft-Start(SS)

The IC has the soft-start function that controls the rise time of the output voltage during start-up to reduce input current surges and prevent output overshoot.

The soft start function will be enabled when any condition that can initiate an output start-up, such as VIN power to the IC or toggle the EN pin, and when the converter is restarted from the OTP and hiccup mode.

The rise time of the output voltage (soft-start time) can be adjusted by a capacitor connected from the SS pin to ground. Each channel of the APW7437 has a separate SS pin and EN pin, when the EN1 and EN2 pins are connected together and the SS1 and SS2 pins are also connected together, it allows the two regulators to start together. The soft start time can be calculated by the fol- lowing formula:

$$T_{SS}(ms) = \frac{V_{REF}(V) \times C_{SS}(nF)}{I_{SS}(uA)}$$


Function Descriptions (Cont.)

Fast Discharge

When the EN signal goes low or the VCC voltage falls below the UVLO threshold, the IC is turned off and the output fast discharge is triggered.

The discharge MOSFET between the LX of the converter and ground is turned on, allowing the output capacitor to be quickly discharged through this MOSFET.

The following figure shows the Vout1 and Vout2 = 1V without load then shutdown, we can see the output can be fully discharged within 5ms.

Current Limit and Hiccup

The IC monitors the current through the high-side power MOSFET to limits the peak inductor current to prevent IC from being damaged in the event of an overload or short circuit.

When the current limit protection is activated, the output current will be limited and the output voltage will drop. When any output voltage drops below the UVP threshold, UVP is triggered and both converters enter hiccup mode. In hiccup mode, the converters will restart periodically. This protection mode is especially useful when the output is shorted to ground. The average short-circuit current is greatly reduced to alleviate thermal issues and protect the IC. Once the overcurrent condition is removed, the IC will exit the hiccup mode.

Over-Temperature Protection (OTP)

The IC features over-temperature protection to monitor junction temperature and prevent damage to the chip when operating at extremely high temperatures.

When the junction temperature exceeds the OTP threshold, the IC will be turned off to lower the junction temperature.

The OTP circuit has hysteresis that allows the IC to restart when the junction temperature is below the OTP low threshold temperature.

Over-Voltage Protection (OVP)

The IC monitors the output voltage through the FB pin to implement the OVP function. When the FB voltage exceeds the OVP high threshold voltage, OVP will be triggered and the IC will be turned off until the FB voltage is lower than the OVP low threshold voltage. At this time, the OVP will be disabled and the IC will resume normal operation.

Power Good Indicator(PG)

The IC has an open-drain PG pin that indicates the output regulation state.

During soft start, PG goes high when both outputs reach 90% of their target value.

During normal operation, when either of the two outputs is not within the range of 85% to 125% of the target voltage, the POK signal will be pulled low immediately. When the output returns between 90% and 120% of the target value, the PG will remain high again.

Since PG is an open-drain pull-down device, it usually requires an external pull-up resistor; however, if the pin is not used, no resistor is necessary.

Application Information

Input Capacitor Selection

The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage.

Use low ESR capacitors for the best performance. Ceramic capacitors with X5R or X7R dielectrics are recommended highly because of their low ESR and small temperature coefficients.

Since the input capacitor (CIN) absorbs the input-switching current, it requires an adequate ripple-current rating.

The RMS current in the input capacitor can be estimated by:

$$I_{\text{CIN}} = I_{\text{OUT}} \times \sqrt{\frac{V_{\text{OUT}}}{V_{\text{IN}}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)}$$

The worst-case condition occurs at VIN = 2VOUT, where:

$$I_{CIN} = \frac{I_{OUT}}{2}$$

For simplification, choose an input capacitor with a RMS current rating greater than half of the maximum load current.

The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small, high-quality ceramic capacitor (e.g. 0.1μ F) should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge in order to prevent excessive voltage ripple at the input. The input voltage ripple caused by the capacitance can be estimated by:

$$\Delta V_{\rm IN} = \frac{I_{\rm OUT}}{F_{\rm OSC} \times C_{\rm IN}} \times \frac{V_{\rm OUT}}{V_{\rm IN}} \times \left(1 - \frac{V_{\rm OUT}}{V_{\rm IN}}\right)$$

Output Capacitor Selection

The output capacitor is required to filter the output and provide load transient current. The higher capacitance value will provide the smaller output ripple and better load transient.

Ceramic electrolytic capacitors with X5R or X7R dielectrics and low ESR are recommended to keep the output voltage ripple low. The output voltage ripple caused by the capacitance can be estimated by:

$$\Delta V_{\text{out}} = \frac{V_{\text{out}}}{F_{\text{osc}} \times L} \times \left(1 - \frac{V_{\text{out}}}{V_{\text{IN}}}\right) \times \left(R_{\text{esr}} + \frac{1}{8 \times F_{\text{osc}} \times C_{\text{out}}}\right)$$

Where L is the inductor value and R_{ESR} is the equivalent series resistance (ESR) value of the output capacitor.

Output Inductor Selection

The inductance value will determine the inductor ripple current and affects the load transient response and output ripple voltage.

The larger inductance value will result in a smaller ripple current, which will result in a lower output ripple voltage but a slower transient response, while a smaller inductance value will have opposite result.

A good rule is to choose the inductor ripple current that is about 30% of the maximum output current. Use the following equation to derive the inductance value for most designs:

$$L = \frac{V_{\text{out}} \times (V_{\text{in}} - V_{\text{out}})}{V_{\text{in}} \times \Delta I_{\text{L}} \times F_{\text{osc}}}$$

Where, ΔI_L is the inductor-ripple current.

To avoid inductor saturation, the inductor current rating should be at least the converter's maximum output current plus the inductor ripple current. The maximum inductor peak current can be estimated by:

$$I_{L(MAX)} = I_{OUT} + \frac{\Delta I_{L}}{2}$$

In addition, choosing an inductor with a smaller DCR will provide better efficiency, and it is recommended that the inductor's DCR should be less than 15m ohms.

Output Voltage Setting

The output voltage is set by a resistor voltage divider between output terminal and ground. For detailed voltage divider settings, please refer to "Typical Application Circuits". The output voltage can be calculated as follows:

$$V_{\rm OUT} = V_{\rm REF} \times \left(1 + \frac{R_{\rm TOP}}{R_{\rm BOT}}\right)$$

Application Information (Cont.)

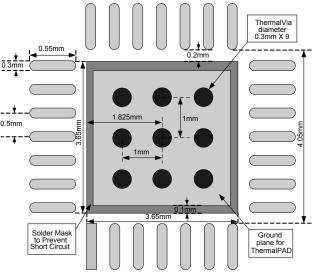
Layout Consideration

For all switching power supplies, the layout is an important step in the design; especially at high peak currents and switching frequencies. If the layout is not carefully done, the regulator might show noise problems and duty cycle jitter.

1. The VIN input capacitor should be placed close to the VIN and PGND pins. Connecting the capacitor and VIN/ PGND pins with short and wide trace without any via holes for good input voltage filtering. The distance between VIN/ PGND to capacitor less than 2mm respectively is recommended.

2. Place the VCC capacitor to VCC pin and GND pin as close as possible.

3. Place the inductor as close as possible to the LX pin to minimize noise coupling into other circuits.


4. The ground of the output capacitor and input capacitor and the PGND of the IC should be as close as possible.

5. Place the feedback resistor divider as close as possible to the FB pin to minimize FB high impedance trace. In addition, the FB pin trace cannot be routed close to the switching signal.

6. For better heat dissipation, it is highly recommended to place a large ground plane under the thermal pad of all PCB layers and place as many vias as possible on the thermal pad from the top layer to the bottom layer.

7. It is recommended to place the input capacitor, output capacitor and inductor on top layer, and use a large power GND plane to connect the ground of the input capacitor, the ground of the output capacitor, and the PGND of the IC.

Recommended Minimum Footprint (Top View)

TQFN5X5-28 Land Pattern Recommendation

Thermal Consideration

It highly recommends all customers to keep the maximum junction temperature under 125oC in continuous operation. The junction temperature can be calculated by following formula :

 $T_J = T_A + P_D \times \theta_{JA}$

T_J: Junction temperature of APW7437

T_A: Operated ambient temperature

 P_{D} : APW7437 power dissipation (not include inductors loss)

 θ_{JA} : Junction to ambient thermal resistance

APW7437 is an optimized solution for thermal dissipation. By following the PCB layout recommendation provided in datasheet, customer can reach θ_{JA} to only 23.6°C/W. For a standard TQFN5*5 θ_{JA} is around 36°C/W.

For example:

Case 1:

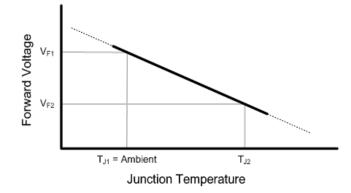
 θ_{JA} is 23.6°C/W, T_A is 50°C and maximum junction temperature <125°C,

The maximum power dissipation of APW7437 will be $P_{D (MAX)} = (125^{\circ}C - 50^{\circ}C) / (23.6^{\circ}C/W) = 3.18W$

Case 2:

 θ_{JA} is 36°C/W, T_A is 50°C and maximum junction temperature <125°C

The maximum power dissipation of APW7437 will be. $P_{D_{(MAX)}} = (125^{\circ}C - 50^{\circ}C) / (36^{\circ}C/W) = 2.08W$



Application Information (Cont.)

Thermal Characteristics Measurement

Thermal characteristics table provides the thermal dissipation's ability of the device on the evaluation board following the layout consideration. The θ_{JA} is mainly dependent on the PCB layout design, the value followed the standard of JESD51 is hard to use to estimate the junction temperature in the real application.

Therefore, when testing on the Anpec's evaluation board, a method by measuring forward voltage (V_F) of diode is used to monitor junction temperature (T_J). As shown in the figure below, the relationship between T_J and V_F is nearly linear.

The relationship between TJ and VF can also be expressed equation as:

 $\begin{array}{l} T_{J}=m\;x\;V_{F}+T_{O}\\ Where\\ T_{J}=junction\;temperature\;in\;^{\circ}C\\ m=slope\;in\;^{\circ}C/Volt\\ V_{F}=forward\;voltage\;drop\\ T_{J}=intercept\;in\;^{\circ}C \end{array}$

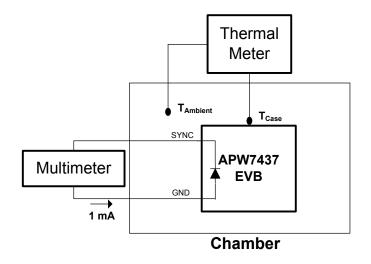
Therefore, with this equation, the junction temperature can be acquired by having the corresponding forward voltage drop V_{F} .

The method to know the relationship between $T_J vs V_F$ is introducing below. First of all, puts the EVB in a chamber with still air, and connects the internal diode to the outside multi-meter. Normally, the body diode of Power Good FET can be used. Or if any pin pulls low or fixed a low voltage would not affect the normal application, their ESD diode can be used to measure the die temperature as well. Secondly, heat the ambient temperature to a specific point and record the corresponding V_F . Because thermal equilibrium is important for minimizing the error, make sure T_{case} and $T_{ambient}$ are very close. Forward voltage should be stable at that moment.

The results will be more accurate with more test data because the real curve of temperature sensitive parameter is not perfectly linear.

Once the relationship between T_J and V_F is known, it can be used to measure the actual junction temperature by knowing V_F with various conditions, such as different operating power, environment temperature, or packaging way.

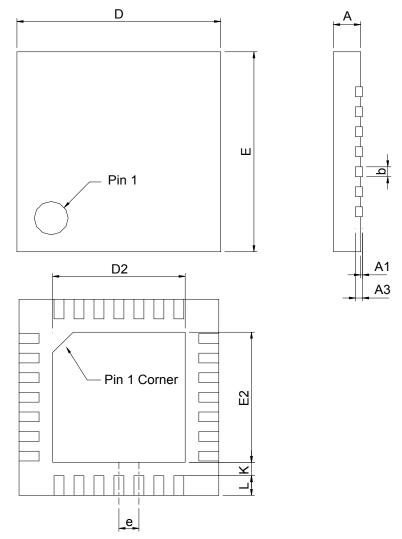
 $\theta_{JA} = (T_J - T_A) / P_D$


With the actual junction temperature, the thermal resistance is easy to calculate by equation above. The device power dissipation is given by:

 $\begin{array}{l} \mathsf{P}_{\mathsf{D}} = (V_{\mathsf{IN}} \; x \; I_{\mathsf{N}}) \; \text{-} \; (V_{\mathsf{OUT}} \; x \; I_{\mathsf{OUT}}) \; \text{-} \; (L_{\mathsf{AC_LOSS}} + \; L_{\mathsf{DC_LOSS}}) \\ \mathsf{L}_{\mathsf{AC_LOSS}} \; \text{and} \; \mathsf{L}_{\mathsf{DC_LOSS}} \; \text{can be calculated from the inductor vendor's website.} \end{array}$

Application Information (Cont.)

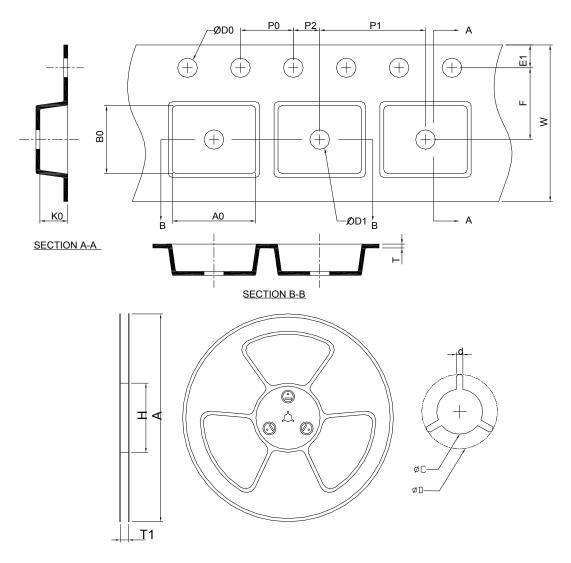
Setup for measuring forward voltage


For the APW7437 EVB, the ESD diode of the SYNC pin (from the GND pin to the SYNC) can be used to measure the die temperature. It will not affect normal application when pulling low to SYNC pin. The current provided from multimeter is 1mA, which is exactly the most suitable value that JEDEC suggests in JESD51-1. Test current 1mA is large enough to obtain a reliable forward voltage reading not influenced by surface leakage but small enough not to cause significant self heating.

The detail measurement result can refer "ANPEC Thermal Test Report".

Package Information

TQFN5x5-28



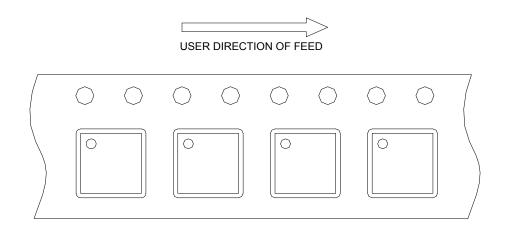
Ş	TQFN5x5-28						
S¥ MBO	MILLIM	MILLIMETERS		HES			
2	MIN.	MAX.	MIN.	MAX.			
А	0.70	0.80	0.028	0.031			
A1	0.00	0.05	0.000	0.002			
A3	0.20	REF	300.0	3 REF			
b	0.18	0.30	0.007	0.012			
D	4.90	5.10	0.193	0.201			
D2	3.50	3.80	0.138	0.150			
E	4.90	5.10	0.193	0.201			
E2	3.50	3.80	0.138	0.150			
е	0.50	BSC	0.020) BSC			
L	0.35	0.45	0.014	0.018			
К	0.20		0.008				

Note : 1. Followed from JEDEC MO-220 WHHD-3.

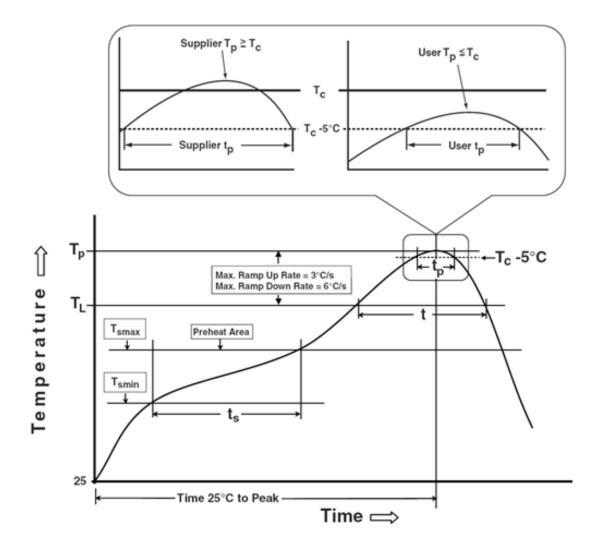
Carrier Tape & Reel Dimensions

Application	Α	Н	T1	С	d	D	W	E1	F
	330.0±2.00	50 MIN.	12.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	12.0±0.30	1.75±0.10	5.5±0.10
TQFN5x5-28	P0	P1	P2	D0	D1	Т	A0	B0	K0
	4.0±0.10	8.0±0.10	2.0±0.10	1.5+0.10 -0.00	1.5 MIN.	0.6+0.00 -0.40	5.35±0.20	5.35±0.20	1.30±0.20

(mm)


Devices Per Unit

Application	Packing	Devices Per Reel
TQFN5x5-28	Tape & Reel	2500



Taping Direction Information

TQFN5x5-28

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly					
$\begin{array}{c} \textbf{Preheat \& Soak} \\ \textbf{Temperature min} (\textbf{T}_{smin}) \\ \textbf{Temperature max} (\textbf{T}_{smax}) \\ \textbf{Time} (\textbf{T}_{smin} \text{ to } \textbf{T}_{smax}) (t_{s}) \end{array}$	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds					
Average ramp-up rate $(T_{smax} \text{ to } T_P)$	3 °C/second max.	3°C/second max.					
Liquidous temperature (T_L) Time at liquidous (t_L)	183 °C 60-150 seconds	217 °C 60-150 seconds					
Peak package body Temperature $(T_p)^*$	See Classification Temp in table 1	See Classification Temp in table 2					
Time $(t_P)^{**}$ within 5°C of the specified classification temperature (T_c)	20** seconds	30** seconds					
Average ramp-down rate (T_p to T_{smax})	6 °C/second max.	6 °C/second max.					
Time 25°C to peak temperature	6 minutes max.	8 minutes max.					
* Tolerance for peak profile Temperatu	* Tolerance for peak profile Temperature (T_p) is defined as a supplier minimum and a user maximum.						
** Tolerance for time at peak profile temperature (t _p) is defined as a supplier minimum and a user maximum.							

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm ³
Thickness	<350	<u>></u> 350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2. Pb-free Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm ³	Volume mm ³
Thickness	<350	350-2000	>2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HOLT	JESD-22, A108	1000 Hrs, Bias @ T _i =125°C
PCT	JESD-22, A102	168 Hrs, 100%RH, 2atm, 121°C
TCT	JESD-22, A104	500 Cycles, -65°C~150°C
HBM	MIL-STD-883-3015.7	$VHBM \ge 2KV$
MM	JESD-22, A115	$VMM \ge 200V$
Latch-Up	JESD 78	10ms, $1_{tr} \ge 100 \text{mA}$

Customer Service

Anpec Electronics Corp. Head Office :

Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel : 886-3-5642000 Fax : 886-3-5642050

Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838

Copyright©ANPEC Electronic Corp. Rev. A.10 - Apr., 2021