CMOSTEK

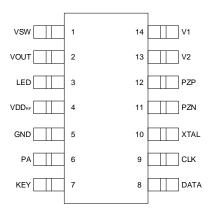
CMT2156A

OOK Transmitter Targeting for Micro-energy-harvesting

Features

- Built-in EEPROM
 - Easy development through utilizing RFPDK tool
 - Fully configurable functions
- Operating frequency: 240 480 MHz
- Symbol rate: 0.5 40 ksps
- Output power: -10 ~ +13 dBm
- Operating current: 8.5 mA @ +10 dBm
- Sleep current: < 20 nA
- Built-in micro-energy-harvesting component, which runs as independent chip with no need for MCU control
- Support 1920, 1527 and 2262 data encoding formats.
- LED display for Tx information.
- Conform to RoHS standard.
- 14 pin SOP packaging.

Application


- Self-powered doorbell transmitter
- Self-powered pager transmitter
- Self-powered kinetic switch transmitter

Ordering Information

Product Model	Frequency	Package	Minimum Order Quantity		
CMT2156A-ESR	433.92 MHz	SOP14/Tape	2,500 pcs		
Please refer to	Table 13 for n	nore orderino	g information.		

CMT2156A

SOP14

CMT2156A Pin Arrangement

Description

Built in a high-performance OOK RF transmitter, the CMT2156A is a transmitter chip targeting for micro-energy-harvesting applications in 240 - 480 MHz frequency range. The encoder integrated in the chip can adapt to the 1527 and 2262 encoding formats that are commonly used in market as well as the 1920 encoding format defined by CMOSTEK[™] . All encoding formats supported by the chip and the RF related configurations can be programmed to the chip EEPROM by users via CMOSTEK[™] USB Writer and RFPDK software. As part of CMOSTEK NextGenRFTM series product, the CMT2156A co-working with CMT221x series receiving-only receiver can achieve low-cost and environment-friendly battery-free solutions for remote control applications.

Terminology

The terms used in this document are described as follows.

AN	application notes	PA	power amplifier
BOM	bill of materials	PC	personal computer
BSC	basic spacing between centers	PCB	printed circuit board
BW	bandwidth	PLL	phase-locked loop
DC	direct current	PN	phase noise
EEPROM	electrically erasable programmable read-only memory	RBW	resolution bandwidth
ESD	electro-static discharge	RCLK	reference clock
ESR	equivalent series resistance	RF	radio frequency
GUI	graphical user interface	RFPDK	RF product development toolkit
IC	integrated circuit	RoHS	restriction of hazardous substances
LDO	low dropout regulators	RSSI	received signal strength indicator
Max	maximum	Rx	receive, receiver
MCU	micro-controller unit	SOP	small out-line package
Min	minimum	Тх	transmit, transmitter
MOQ	minimum order quantity	Тур	typical
NP0	negative-positive 0	XOSC	crystal oscillator
INF U	with temperature compensation	X030	
OBW	occupied bandwidth	XTAL/Xtal	crystal
OOK	on-off keying		

Table of Contents

1	Electrical Specifications	4
	1.1 Recommended Operating Conditions	4
	1.2 Absolute Maximum Ratings	4
	1.3 Transmitter Specification	5
	1.4 Crystal Oscillator	6
	1.5 DC-DC Specification	
2	Pin Description	7
3	Typical Performance	8
4	Typical Application	9
5	Function Description	11
	5.1 Function Overview	
	5.2 Modulation, Frequency and Data Rate	12
	5.3 RFPDK and Built-in EEPROM	12
	5.4 Power Amplifier	
	5.5 Ramping	13
	5.6 Operating State	
	5.7 Encoder	
	5.7.1 1920 Encoding Structure	
	5.7.2 1527 Encoding Structure	
	5.7.3 2262 Encoding Structure5.8 LED Transmission Indication	
6	Ordering Information	19
7	Packaging Information	
8	Top Marking	
9	Revise History	22
10) Contacts	23

1 Electrical Specifications

The test conditions are that V1= 5 V, TOP= 25 $^{\circ}$ C, FRF = 433.92 MHz, out power being +10 dBm and matching to 50 Ω impedance, if nothing else stated. All measurement results are obtained using the evaluation board CMT2156A-EM V1.0 if nothing else stated.

1.1 Recommended Operating Conditions

Table 1. Recommended Operating Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating temperature	T _{OP}		-40		85	ĉ
Supply voltage slope			1			mV/us

1.2 Absolute Maximum Ratings

Parameter	Symbol	Condition	Min.	Тур.	Max.
AC input voltage	VAC _{IN}	Input from PZN and PZP		6	V
The output voltage	Vout			2.4	V
Output current	I _{OUT}			150	mA
Interface voltage			-0.3	V _{DD} + 0.3	V
Junction temperature	TJ		-40	125	°C
stored temperature	T _{STG}		-50	150	°C
Welding temperature	T _{SDR}	Lasting for at least 30 s		255	°C
ESD rating [2]		Human body model (HBM)	-2	2	kV
Latch-up current		@ 85 ℃	-100	100	mA

Table 2. Absolute Maximum Ratings

Notes:

[1]. Exceeding *the Absolute Maximum Ratings* may cause permanent damage to the equipment. This value is a pressure rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to absolute maximum ratings for extended periods of time, it may affect equipment reliability.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent performance degradation or loss of functionality.

1.3 Transmitter Specification

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Frequency range ^[1]	F _{RF}		240		960	MHz
Frequency	L	F _{RF} ≤ 480 MHz		198		Hz
synthesizer resolution	F _{RES}	F _{RF} ≥ 480 MHz		397		Hz
Max output power	P _{OUT(Max)}			+13		dBm
Min output power	$P_{\text{OUT}(\text{Min})}$			-10		dBm
Output power step	P _{STEP}			1		dB
PA Ramping time ^[2]	t _{RAMP}		0		1024	us
Operating current ^[3]		0 dBm		4.77		mA
@ 315 MHz	DD-315	+10 dBm		8.1		mA
Operating current ^[3]		0 dBm,		5.1		mA
@ 433.92 MHz	DD-433.92	+10 dBm		8.5		mA
Sleep current	ISLEEP			20		nA
Symbol rate	SR		0.5		40	
Frequency tuning time	t _{TUNE}	From XO stable to ready to transmit, include the frequency calibration		370		us
		100 kHz frequency deviation		-80		dBc/Hz
		200 kHz frequency deviation		-81		dBc/Hz
Phase noise	PN	400 kHz frequency deviation		-91		dBc/Hz
		600 kHz frequency deviation		-96		dBc/Hz
		1.2 MHz frequency deviation		-108		dBc/Hz
315 MHz Harmonic	H2 ₃₁₅	2 nd harmonic @ 630 MHz, +10 dBm P _{OUT}		-48		dBm
output ^[4]	H3 ₃₁₅	3 rd harmonic @ 945 MHz, +10 dBm P _{OUT}		-62		dBm
433.92 MHz Harmonic	H2 _{433.92}	2 nd harmonic @ 867.84 MHz, +10 dBm P _{OUT}		-38		dBm
output ^[4]	H3 _{433.92}	3 rd harmonic @ 1301.76 MHz, +10 dBm P _{OUT}		-60		dBm
OOK extinction ratio				60		dB
315 MHz occupied bandwidth	F _{OBW315}	Measured under the condition of -20 dBc, RBW = 1 kHz, SR = 1.2 ksps, t_{RAMP} = 256 us.		6		kHz
433.92 MHz occupied bandwidth	F _{OBW433.92}	Measured under the condition of -20 dBc, RBW = 1 kHz, SR = 1.2 ksps, t_{RAMP} = 256 us.		7		kHz

Table 3. Transmitter Specification

Notes:

[1]. Frequency is continuous in the specified range.

[2]. 0 and 2ⁿ us (n = 0 ~10). When set to 0, the PA output power will rise/fall to the set value at a speed that is as high as possible.

[3]. The operating current is measured under the condition of: 1527 packet format, normal button mode, 1 button, Sync ID = 0, no LED.

[4]. The harmonic output is measured in the application as shown in Figure 8.

1.4 Crystal Oscillator

Table 4. Crystal	Oscillator Specification	
------------------	--------------------------	--

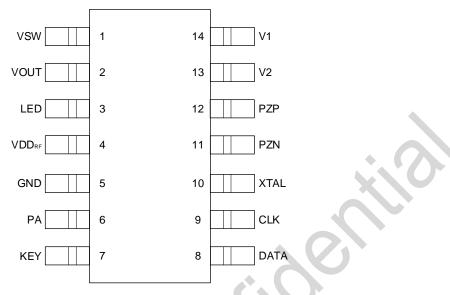
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Crystal frequency ^[1]	F _{XTAL}			26		MHz
Crystal frequency precision ^[2]				± 20		ppm
Load resistance ^[3]	C _{LOAD}		10	15	20	pF
Crystal equivalent resistance	Rm				60	Ω
Crystal startup time [3]	t _{XTAL}			400		us

Notes:

[1]. The CMT2156A utilizes external reference clock to directly drive XIN pin through coupling capacitor. The peak-to-peak value of external clock signal is required between 0.3 and 0.7 V.

[2]. It involves:(1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal frequency tolerance is subject to the bandwidth of the receiver and the RF tolerance between the receiver and its paired transmitter.

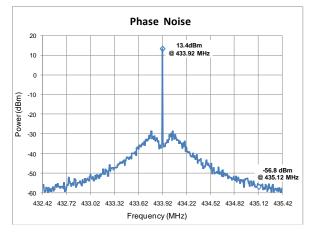
[3]. The required crystal load capacitor is built in the chip to reduce the amount of external components.

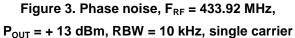

[4]. This parameter is to a large degree crystal dependent.

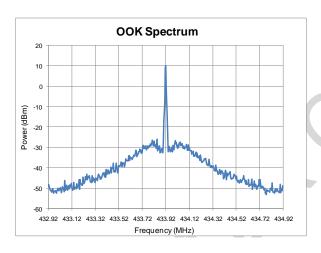
1.5 DC-DC Specification

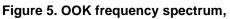
Table 5. DC-DC Specification

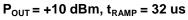
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
DC input voltage	VDCIN	Input from V1 or V2		5	6	V
Load adjusting percentage				0.5		%
Linearity adjusting percentage				0.5		%
Efficiency	EFFI	PZN or PZP = 4 V		90		%
Quiescent current		PZN or PZP = 4 V		30		uA
Switch oscillator frequency				1		MHz
Max duty ratio				100		%

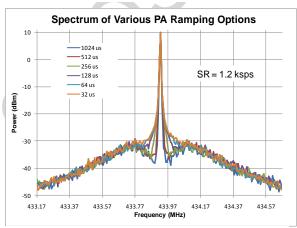

2 Pin Description


Figure 1. CMT2156A Pin Arrangement

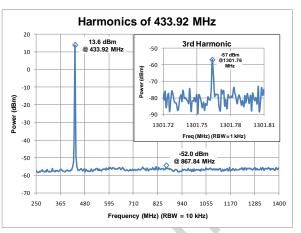
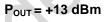
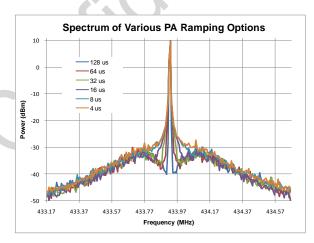
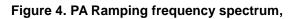

Table 6. CMT2156A Pin Arrangement

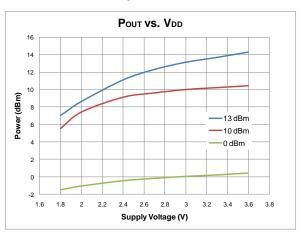

Pin #	Pin Name	I/O	Description
1	VSW	0	Internal DC-DC switch control port.
2	VOUT	0	VOUT output end.
3	LED	0	LED driving port, low active.
4	VDD _{RF}	I	Power supply input.
5	GND	- 1	Ground.
6	PA	0	Power amplifier output.
7	KEY	-	Press key/button.
8	DATA	10	Data pin for accessing EEPROM, pulling up to VDD internally.
9	CLK	I	Clock pin for accessing EEPROM, pulling up to VDD internally.
10	XTAL	I	26 MHz single-ended crystal oscillator input.
11	PZN	I	Micro-energy AC input end.
12	PZP	I	Micro-energy AC input end.
13	V2	0	Micro-energy DC output 2.
14	V1	0	Micro-energy DC output 1.

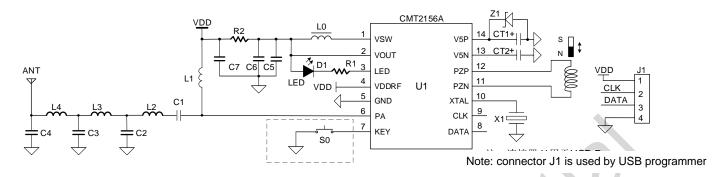



3 Typical Performance

SR = 1.2 ksps, P_{OUT} = +10 dBm

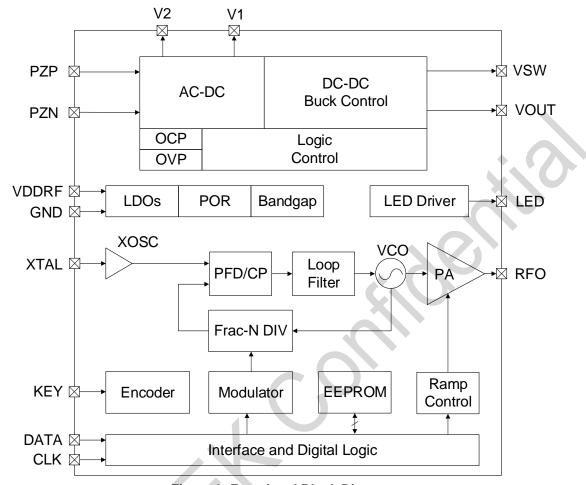

Figure 2. 433.92 MHz Harmonic output,


DR = 9.6 ksps, P_{OUT} = +10 dBm

F_{RF} = 433.92 MHz

4 Typical Application

Figure 8. CMT2156A Typical Application Schematic Diagram


Application considerations:

- 1. During developing and production, J1 connector is required for EEPROM programming.
- 2. The general PCB design principles are as follows:
 - Apply continuous ground plane as large as possible in design.
 - Make as many ground vias as possible (especially on the area near GND pin) to reduce the series parasitic inductance between GND pin and ground plane.
 - Try to avoid using long or thin transmission lines to connect components.
 - Adjacent inductors should be placed perpendicular to each other.
 - Try to place C5, C6, C7 close to the CMT2156A chip to get better filtering performance.
 - Try to place crystal X1 near the chip. Make metal casings ground and place them far away from RF output signal and digital signal.

			Component Value				
Label	Description	315 MHz	315 MHz 434 MHz 868 MHz 915 MHz		Unit	Supplier	
U1	CMT2156A,OOK encoding based transmitter with micro-energy-harvesting function			-		-	CMOSTEK
X1	±20 ppm, SMD32*25 mm, crystal			26		MHz	EPSON
R1	±10%, 0402/0603			3.3		kΩ	
R2	±10%, 0402/0603			27		Ω	
CT1	Filter capacitor			47		uF	
CT2	Filter capacitor			100		uF	

Table 7. Typical Application BOM

			Comp	Component Value			
Label	Description	315 MHz	434 MHz	868 MHz	915 MHz	Unit	Supplier
C1	±5%, 0402 NP0, 50 V	30	30	8.2	8.2	uF	Murata GRM15
C2	±5%, 0402 NP0, 50 V	8.2	12	5.6	3.9	pF	Murata GRM15
C3	±5%, 0402 NP0, 50 V	8.2	10			pF	Murata GRM15
C4	±5%, 0402 NP0, 50 V					pF	Murata GRM15
C5	±20%, 0603 X7R, 25 V			1	l	uF	Murata GRM15
C6	±20%, 0603 X7R, 25 V			0.1	(uF	Murata GRM15
C7	±20%, 0603 X7R, 25 V				10	uF	Murata GRM15
L0				10		uH	
L1	±5%, 0603 multilayer chip inductor	220	180	100	100	nH	Murata LQG18
L2	±5%, 0603 multilayer chip inductor	68	18	6.8	5.6	nH	Murata LQG18
L3	±5%, 0603 multilayer chip inductor	47	10	10pF	8.2	nH	Murata LQG18
L4	±5%, 0603 multilayer chip inductor	56	220pF	220pF	220pF	nH	Murata LQG18
Z1	voltage regulation diode			5.1		V	
D1	D0603, red LED			-		-	-
S0	Button			-		-	-
	Button						

5 Function Description

Figure 9. Functional Block Diagram

5.1 Function Overview

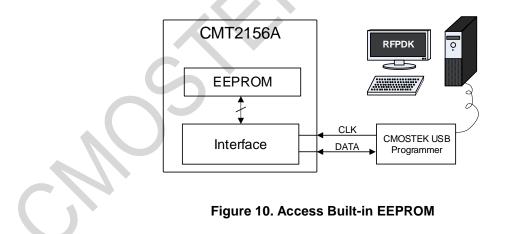
The CMT2156A is a highly flexible, high-performance OOK based RF transmitter with encoder function, integrated with kinetic energy harvesting function, suitable for 240 - 480 MHz wireless transmission applications. It is a part of CMOSTEK NextGenRFTM series product, which is a complete product line including transmitters, receivers, and transceivers. Built in with the 527 and 1527 encodings that are commonly used in market, the CMT2156A becomes an ideal replacement of chip encoder solutions like xx527, xx1527 and xx2240. With its high-density and low-power design, the chip fits well in kinetic energy powered battery-free wireless transmission applications.

As shown in the above function block diagram in Figure 9, the RF frequency is directly synthesized through a fully integrated low-noise fractional frequency synthesizer in the CMT2156A. A single-pin crystal oscillator circuit is used to reduce the number of external components with the load capacitor required for crystal oscillation integrated inside the chip. Upon each power-on reset (POR), the analog module inside the chip is calibrated adapting to an internal reference voltage source. Such calibration can make the chip work better under different thermometer voltages. The data transmission is triggered by a button action. The transmitted data is modulated and transmitted through a high-efficiency power amplifier with its transmission power supporting set value between -10 to +13 dBm in 1dB step. Users can program frequency, output power and other product parameters into the built-in EEPROM of the chip through USB Programmer and RFPDK, which can simplify development and production much thus reducing cost efficiently. Besides, during production, to save the production programming work, users can directly use inventory, which adopts default parameters such as 433.92 MHz,.

The CMT2156A is built in with a micro-energy-harvesting component, which can directly connect with various micro-energy

power generation devices or materials, such as mechanical/kinetic energy generators, deformation plates, piezoelectric ceramics. The chip can fulfill AC-to-DC conversion, as well as perform high-efficiency DC voltage regulation, which outputs DC to the on-chip encoder for high-frequency transmission, thus achieving battery-free and power-free transmitter product design.

5.2 Modulation, Frequency and Data Rate


The CMT2156A supports OOK modulation with data rate up to 40 ksps (OOK) and a continuous frequency covering in 240 - 480 MHz range, including free ISM frequency ranges near 315 MHz and 433.92 MHz. The chip integrates a high-frequency spectral purity and low-power fractional frequency synthesizer with output signal frequency accuracy better than 198 Hz. The supported modulations, frequency range and data rates are listed in the below table.

Parameter	Value	Unit
Modulation type	ООК	
Frequency	240 to 480	MHz
Frequency resolution	198	Hz
Data rate	0.5 - 40	ksps

Table 8. Modulations, Frequency Range and Data Rate

5.3 RFPDK and Built-in EEPROM

RFPDK (RF Products Development Kit) is a user-friendly software providing visualized configuration operation of CMT2156A. Users only need to input or select proper value of each parameter then click *Burn* to complete overall CMT2156A chip configuration with no need for direct register access or control. The EEPROM access method is shown in the figure below.

5.4 Power Amplifier

The CMT2156A integrates a high-efficiency single-ended power amplifier supporting configuration from -10 to 13 dBm in 1 dB step. Users can have configuration on RFPDK and program the configuration to chip EEPROM through RFPDK. Please refer to *Typical Application Schematic* in Section 3 for the power amplifier matching reference details.

5.5 Ramping

When a PA is quickly turned on or off, the varying input impedance will instantly interfere with the VCO's output frequency. This phenomenon is called frequency traction, which causes spectral spurs in the output spectrum around the desired carrier frequency. By gradually ramping the on and off of power amplifier, it can minimize the transient pulse of the power amplifier, namely reduce frequency traction. The PA built in CMT2156A supports configuration options of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 us, as shown in Figure 11. When the option 0 is selected, the PA output power will increase to its set value as quickly as possible. The ramp-down time is the same as the corresponding ramp-up time.

CMOSTEK suggests that the maximum symbol rate should be not more than half of PA ramping rate as shown in the below formula.

$$SR_{Max} \le 0.5 * \left(\frac{1}{t_{RAMP}}\right)$$

In above, PA ramping rate is 1/t_{RAMP}, namely the PA ramping time can be calculated from a given maximum symbol rate as shown in the below formula.

$$t_{RAMP} \le 0.5 * (\frac{1}{SR_{MAX}})$$

Users can select a proper option value of t_{RAMP} in the option list mentioned above. If t_{RAMP} is somehow configured as more than 0.5*(1/SR_{Max}), it may bring extra challenge to OOK demodulation in Rx device.

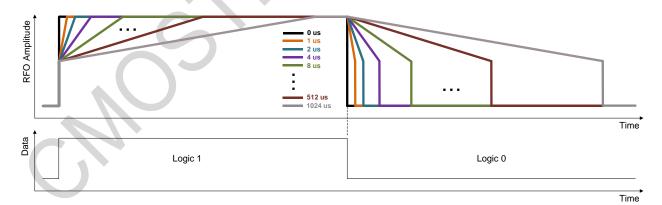


Figure 11. PA Ramping Time

5.6 Operating State

CMT2156A supports 4 operating states including sleep, oscillation starting, tuning and Tx. When no transmission is performed, the system stays in the sleep state.

- In button triggered Tx mode, when a button is pressed, the system will follow the state transition as sleep -> oscillation starting -> tuning -> Tx. When Tx is completed, the system returns to the sleep state.
- In the periodic Tx mode, the device will wake up from the sleep state periodically, then follow the same sequence, namely perform transmission then return to the sleep state.

Sleep state

When the CMT2156A is in this state, all internal modules are off with a minimum current consumption of 20 nA.

Oscillation starting

Once the CMT2156A detects valid button press or periodic Tx counter value being reached, it will enter oscillation starting state and the crystal oscillator circuit starts to operate. T_{XTAL} is the settling time for oscillation, which is largely related to crystal itself. The typical values of t_{XTAL} are listed in Table 9.

Tuning state

Frequency synthesizer will tune the frequency of the CMT2156A to a required frequency in t_{TUNE} time. PA is opened to transmit the data generated by embedded encoder only when frequency tuning is completed.

Tx state

In this state, the CMT2156A performs modulation and data transmission. The data packet is generated by the embedded encoder. Data packet content depends on the selected encoder, button mode and which key is pressed.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Crystal oscillation time ^[1]	t _{XTAL}		400		us
Time for tuning to target frequency ^[2]	t _{TUNE}		370		us
Notes: [1]. This parameter depends on crystal itself. [2]. The time duration from frequency tuning start to the	the time when it's stable	e and ready	for Tx.		

Table 9. Time Parameters for Different Operating States

5.7 Encoder

The encoder supports 3 encoding formats, 1920, 1527 and 2262. The 3 formats have different structures as discussed in below sections. The main difference among the 3 formats are listed in the below table.

Encoding	Code Element (sym/bit)	Sync Head Length (bits)	Data Length (bits)	CRC	ID Study	Button Mode ^[1]
1920	3/4/5/6	1 – 32	1 – 7	Support	Support	Normal mode
1527	4	20	1 – 7	Not support	Support	Normal mode
2262	8	6 – 11	1 – 6	Not support	Not support	Normal mode

Table 10. Characteristics of 3 Encoding Formats

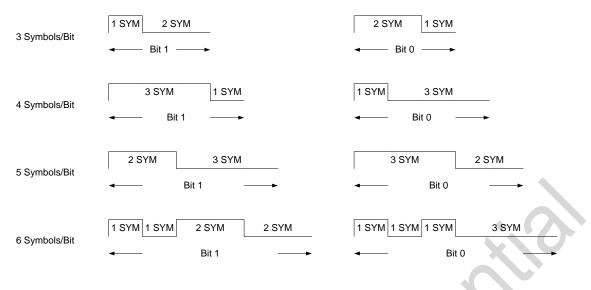
The below sections provide brief information only. For content in below, some elements in data packet are measured in symbol unit, some other ones are measured in bit unit. As for the ones in bit unit, it is composed of a number of symbol codes. In the below figures, SYM represents symbol.

5.7.1 1920 Encoding Structure

The 1920 data packet format structure is shown in the below table.

Parameter	Description	Default	Mode
Preamble	Preamble length can be configured as 16 symbols or disable.	Disable	Basic
i reamble	Treamble length can be configured as to symbols of disable.	Disable	advanced
Address (Syna ID) length	ID length, the value range is 1 \sim 32 symbols.	32 bits	Basic
Address (Sync ID) length	To length, the value lange is 1 ~32 symbols.	32 DIIS	advanced
Address (Syme ID) value	ID value, the value range is $0\sim2^{ t Length}$ -1.	0	Basic
Address (Sync ID) value	ID value, the value range is 0 ~ 2 ° -1.	0	advanced

Table 11. Configurable Items in 1920 Data Packet


A 1920 packet includes 16 Preambles, a Head with 32 symbol, a sync ID, a configurable Data field and then CRC with 8 symbols as shown in the below figure.

Preamble	Head_N	Address (Sync ID) configurable 1-32 bits	D0	D1	D2	D3	CRC
16 symbols	32 symbols		1 bit	1 bit	1 bit	1 bit	8 symbols
			1			1	

Figure 12. 1920 Encoding Format Data Packet Structure

Bit format:

In 1920 encoding format, one bit can consist 3, 4, 5 or 6 symbols (namely codes). Users can select required bit format parameter value on RFPDK. Please be noted that only Sync ID field and D0, D1, D2, D3, D4, D5, D6 are defined based on bit.

Figure 13. 1920 Bit Format Options

5.7.2 1527 Encoding Structure

The configurable items of 1527 encoding data format are listed in the below table.

Figure 14. Configurable Items of 1527 Encoding Format

Parameter	Description	Default	Mode
Sync ID Value	Sync ID value range is $0 \sim 2^20-1$. The 1527 Sync ID length is fixed to 20 bits.	0	Basic advanced

Notes:

[1]. In typical 1527 encoding chip, T_{CLK} is 8 on-chip RC-OSC clock cycles and 1 symbol (SYM) is defined as 4 T_{CLK}. In 1527 encoding, 1 bit is composed of 4 symbols, namely 16 T_{CLK}. However, on RFPDK for CMT2156A, the rate is configured in SYM unit, which is different from the T_{CLK} based rate in typical 1527 encoding chip.

According to typical 1527 data format structure, it includes Synch with 20 symbols, Synch Id address with 20 bits and Data with 4 bits.

Sync	Address (Sync ID)	D0	D1	D2	D3	
32 symbols	configurable 20 bits	1 bit	1 bit	1 bit	1 bit	

Figure 15. 1527 Data Packet Structure Schematic

Bit Format:

In 1527 encoding format, a bit is fixed to consist of 4 symbols as shown in the below figure. Please be noted that, Sync ID and D0, D1, D2, D3 are all defined in bit unit.

3 SYM	1 SYM	1 SYM	3 SYM
	→	◄	Bit 0

Figure 16. 1527 Bit Encoding Schematic Diagram

5.7.3 2262 Encoding Structure

The configurable items for 2262 encoding format are listed in the below table.

Table 12. Configurable Parameter of 2262 Encoding Structure

Parameter	Description	Default	Mode
Sync ID Length	Sync ID length. The value range is 6 - 11 and the total bit number of Sync ID and data is fixed to 12.	8-bit	Basic advanced
Sync ID Value	Indicate which bit is available for use in Sync ID, representing with 0, 1 and F encoding.	00000000	Basic advanced

The standard 2262 data packet includes Address with 8 -11 bits, Data with 1 - 4 bits and Sync with 32 symbols as shown in the below figure.

Address (Sync ID) configurable 8-11 bits	Data 4-1 bit(s)	Sync 32 symbols	
--	--------------------	--------------------	--

Figure 17. 2262 Data Packet Structure Schematic Diagram

Bit Format:

In 2262 encoding format, a single bit consists of 8 symbols as shown in the below figure. Please be noted that Sync ID and Data are defined in bit.

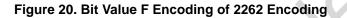


Figure 18. Bit Value 1 Encoding of 2262 Encoding

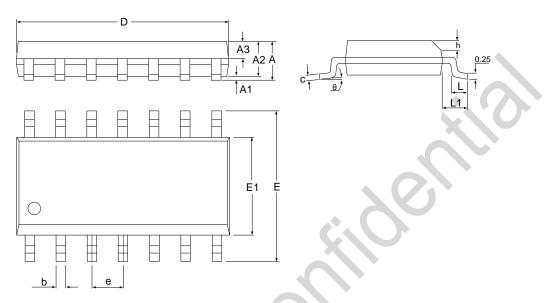
Figure 19. Bit Value 0 Encoding of 2262 Encoding

5.8 LED Transmission Indication

It supports configurations of enabling/disabling LED pin and current driving capability. When LED pin is configured enabled, LED light turns on upon data transmission and keeps on until Tx ends.

6 Ordering Information

Mode	el	Description	Packaging	Package	Operating Condition	Minimum Order Quantity	
CMT2156A-ESR ^[1]		OOK based transmitter for	SOP14 Tape and Reel			-40 to 85 ℃	2 500 500
		micro-energy-harvesting	50P14	Tape and Reel	-40 10 65 C	2,500 pcs	
Notes:							
[1]. E refe	ers to exte	ended Industrial product rating, v	which supports tem	perature range fror	n -40 to +85 °C.		
[2]. S refe	[2]. S refers to the package type SOP14.						
[3]. R refers to tape and reel type, and the minimum ordering quantity (MOQ) is 2,500 pieces.							


Table 13. CMT2156A Ordering Information

Please visit <u>www.cmostek.com</u> for more product/product line information.

Please contact sales@cmostek.comor your local sales representative for sales or pricing requirements.

7 Packaging Information

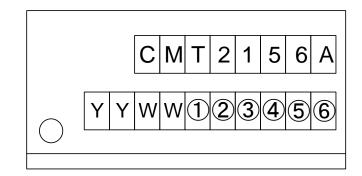

The packaging information of the CMT2156Ais shown in the below figure.

Figure 21. SOP14 Packaging

Symbol	Scale (mm) Maximum			
	Min.	Тур.	Min.	
А		-	1.75	
A1	0.05	-	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	-	0.48	
С	0.21	-	0.26	
D	8.45	8.65	8.85	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е	1.27 BSC			
h	0.25	-	0.50	
L	0.50	-	0.80	
L1		1.05 BSC		
θ	0	-	8°	

8 Top Marking

Figure 22. CMT2156A Top Marking

Marking Method	Laser	
Pin 1 Mark	Diameter of the circle = 1 mm	
Font Height	0.35 mm, align right	
Line 1 Marking	CMT2156A refers to model CMT2156A.	
Line 2 Marking	YYWW is the date code assigned by the package factory. YY is the last 2 digits of the year. WW is the working week. 123456 is internal tracing code.	

Table 15. CMT2156A Top Marking Information

9 Revise History

Table 16. Revise History Records

Version No.	Chapter	Description	Date
0.8	All	Initial version	2020-02-28
0.9	4	Section 4: change typical application schematic diagram and BOM table	2020-03-27
1.0	4	Section 4: change typical application schematic diagram	2020-03-30
1.1	4	Table 7, change the values of CT1, CT2	2020-05-15
1.2	4	Table 7, change the value of R2.	2020-09-07
1.3	All	Change to 1 button Remove related documents information	2021-08-24

10 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. Chinaa

Tel:	+86-755-83231427
Post Code:	518055
Sales:	sales@cmostek.com
Supports:	support@cmostek.com
Website:	www.cmostek.com

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.