CMOSTEK

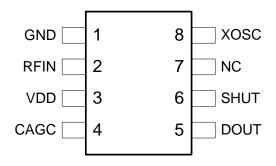
CMT2220LS

300 - 480 MHz OOK Receiver with 3.0 - 5.5 V Supply Power

Features

- Frequency range: 300 480 MHz
- Data rate: 1 5 kbps
- Sensitivity: -107 dBm (3 kbps), 0.1% BER
- Receiver bandwidth: 510 kHz @ 433.92 MHz
- Image rejection ratio: 33 dB
- Supporting input signal up to 10 dBm
- Operating independently with antenna in and data out
- Supply voltage: 3.0 5.5 V
- Low power consumption: 5.3 mA @ 315 MHz
- SOP8 packaging
- RoHS compliant

Application


- Home and building automation control
- Infrared receiver replacement
- Industrial monitoring and control
- Wireless meter reading
- Wireless lighting control system
- Wireless alarm and security system
- Access control system with remote control

Description

The CMT2220LS are new-generation, low-power, high-performance, plug-and-play based OOK RF receiver with no need for register configuration, fitting for wireless receiving applications within 300 - 480 MHz ISM band. The CMT2220LS supports a data rate range of 1 - 5 kbps, ideal for pairing with encoder or MCU based low-cost transmitters. Operating in a supply voltage range of 3.0 - 5.5 V, the chip remains stable receiving performance with no significant performance change in different power supply voltage within this voltage range. It consumes only a current of 5.7 mA while achieving a receiving sensitivity of -107 dBm @ 433.92 MHz. The chip can operate at the commonly used 315 MHz frequency or other RF frequency points within the applicable frequency band through selecting crystals with different frequencies. The CMT2220LS receiver cooperating with CMT211x / 5x / 8x transmitters can fulfill cost-effective RF application solutions conveniently.

Ordering Information

Product Mod	el Pa	ckage	Minimum Order Quantity
CMT2220LS-E	SR SOF	P8/Tape	2,500 pcs

CMT2220LS Pin Arrangement

Table of Contents

1	Elect	ctrical Specifications	3
	1.1	Recommended Operating Conditions	3
	1.2	Absolute Maximum Ratings	3
	1.3	Receiver Specification	4
	1.4	Crystal Oscillator Specification	5
2	Pin [Description	6
3	Туріс	ical Application Schematic	
		ical Performance	
5	Fund	ction Description	
	5.1	Crystal Frequency and RF Frequency Point	
	5.2	Receiver IF Bandwidth	
	5.3	Receiver IF Bandwidth Considerations of CAGC Selection	10
6	Orde	ering Information	11
7	Pack	kaging Information	
8	Top l	Marking	
9	Revi	ise History	
10	Cont	ntacts	15

1 Electrical Specifications

If nothing else stated, the test conditions are V_{DD} = 5.0 V, T_{OP} = 25 °C, F_{RF} = 433.92 MHz, sensitivity being measured by receiving a PN9 sequence, matching to 50 Ω impedance and 0.1% BER. All measurement results are obtained using the evaluation board CMT2220LS-EM if nothing else stated.

1.1 Recommended Operating Conditions

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	V _{DD}	-40 °C ~ +85 °C	3.0		5.5	V
Operating temperature	T _{OP}		-40		85	°C
RF supply voltage slope	V _{SL}		1			mV/us

Table 1. Recommended Operating Conditions

1.2 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Parameter	Symbol	Condition	Min.	Тур.	Max.
Supply voltage	V _{DD}		-0.3	5.5	V
Interface voltage	V _{IN}		-0.3	V _{DD} + 0.3	V
Junction temperature	TJ		-40	125	°C
Storage temperature	T _{STG}		-50	150	°C
Soldering temperature	T _{SDR}	Lasts for at least 30 seconds		255	°C
ESD rating ^[2]		Human body model (HBM)	-2	2	kV
Latch-up current		@ 85 ℃	-100	100	mA

Notes:

[1]. Exceeding *the Absolute Maximum Ratings* may cause permanent damage to the equipment. This value is a pressure rating and does not imply that the function of the equipment is affected under this pressure condition, but if it is exposed to absolute maximum ratings for extended periods of time, it may affect equipment reliability.

[2]. The CMT2220LS is a high performance RF integrated circuit. The operation and assembly of this chip should only be performed on a workbench with good ESD protection.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent performance degradation or loss of functionality.

1.3 Receiver Specification

Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
Frequency range	F_{RF}	Through choosing crystals with different frequencies				480	MHz
Data rate	DR			1		5	kbps
0	S ₃₁₅	F _{RF} = 315 MHz, DR = 3 kbps, BER = 0.1	%	-108	-107	-104	dBm
Sensitivity	S _{433.92}	F _{RF} = 433.92 MHz, DR = 3 kbps, BER =	0.1%	-108	-107	-104	dBm
Operating current	I _{DD315}	F _{RF} = 315 MHz			5.3		mA
	I _{DD433.92}	F _{RF} = 433.92 MHz			5.7		mA
Shutdown current	I _{SHUT}	SHUT pin keeps high level			0.3		uA
Receiver bandwidth	BW ₃₁₅	F _{RF} = 315 MHz			370		kHz
	BW _{433.92}	F _{RF} = 433.92 MHz			510		kHz
		CAGC capacitance value ^[2]	4.7uF		87		
D i i i i i [1]		(Time duration from the time point	2.2uF		28		ms
Receiver startup time ^[1]	T _{START-UP}	, , ,	1uF		15		
		level to low level to the time point when received data is output.)	0.47uF		4.8		
Saturation input level	P _{LVL}				10		dBm
Input third-order Intercept point	IIP3	Two-tone test with frequency offset between 1 and 2 MHz, maximum system gain setting.			-29		dBm
Anti-blocking		±1 MHz, continuous wave jamming ±2 MHz, continuous wave jamming			32		dB
	BI				42		dB
		±10 MHz, continuous wave jamming			61		dB
Anti-co-channel-interference	CCR				-11		dB
Image rejection ratio	IRR				33		dB

Table 3. Receiver Specification

Notes:

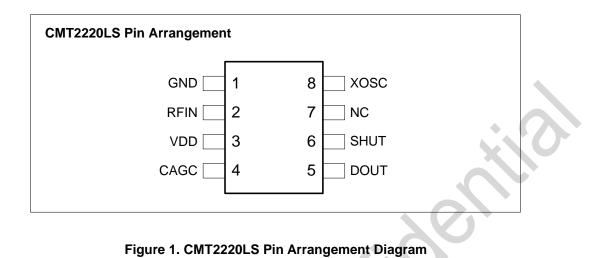
- [1]. The receiver startup time is affected much by the CAGC capacitance value as well as the received signal strength. The less the signal strength, the longer the startup time.
 - In AC to DC power supply systems, if an application allows a longer chip startup time, users can choose a CAGC with larger value. For instance, 4.7 uF is an appropriate value. In this case the chip startup time is around 70 ms in the condition of receiving signal strength being near to receiving sensitivity.
 - In battery-powered applications, it is appropriate to select CAGC as 1 uF. In this case the chip startup time is around 8 ms in the condition of receiving signal strength being near to receiving sensitivity. If it requires a shorter chip startup time, users can choose a slightly smaller CAGC value based on practical requirements.

[2]. The different receiver start up time test values according to different CAGC capacitance values are provided in the table.

1.4 Crystal Oscillator Specification

Symbol	Condition	Min.	Тур.	Max.	Unit
F _{XTAL315}	F _{RF} = 315 MHz		9.81563		MHz
F _{XTAL433.92}	F _{RF} = 433.92 MHz		13.52127		MHz
			±20		ppm
CLOAD	49USSMD or 49S packaging		15		pF
Rm				60	Ω
T _{XTAL}			400		us
	F _{XTAL315} F _{XTAL433.92} C _{LOAD} Rm	FxTAL315 FRF = 315 MHz FxTAL433.92 FRF = 433.92 MHz CLOAD 49USSMD or 49S packaging Rm	FxTAL315 FRF = 315 MHz FxTAL433.92 FRF = 433.92 MHz CLOAD 49USSMD or 49S packaging Rm	FxTAL315 FRF = 315 MHz 9.81563 FxTAL433.92 FRF = 433.92 MHz 13.52127 CLOAD 49USSMD or 49S packaging ±20 Rm 15	$F_{XTAL315}$ $F_{RF} = 315 \text{ MHz}$ 9.81563 $F_{XTAL433.92}$ $F_{RF} = 433.92 \text{ MHz}$ 13.52127 C_{LOAD} 49USSMD or 49S packaging 15 Rm 60

Table 4. Crystal Oscillator Specification


Notes:

[1]. It involves:(1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature changing. The acceptable crystal frequency tolerance is subject to the bandwidth of the receiver and the RF tolerance between the receiver and its paired transmitter.

[2]. As the crystal parasitic capacitance value differs in different crystal packaging type, it is recommended to select a crystal with appropriate load capacitance value according to the packaging type used.

[3]. This parameter is to a large degree crystal dependent.

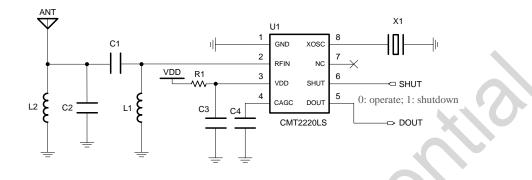

2 Pin Description

Table 5. CMT2220LS Pin Description

Pin #	Pin Name	I/O	Description
1	GND	I	Ground
2	RFIN	I	RF signal input pin, connecting matching network externally.
3	VDD	I	3.0 - 5.5 V supply power input.
4	CAGC	1	Automatic gain control pin, connecting filtering capacitor externally.
5	DOUT	0	Received data output
6	SHUT		Chip shutdown control pin, connecting high level to disable the chip and connecting low level to enable the chip.
7	NC		No connection
8	XOSC	1	Crystal oscillator input pin, connecting crystal externally.

3 Typical Application Schematic

Lebel	Description	Compone	ent Value	Unit	Quantier
Label	Description	315 MHz	433.9 2MHz	Unit	Supplier
X1	Crystal, ±20 ppm, 49USSMD	9.81563	13.52127	MH	EPSON
L1	Matching network inductor, \pm 10%, 0603 multilayer chip inductor	47	27	nH	Sunlord
L2	Matching network inductor, ± 10%, 0603 multilayer chip inductor	68	39	nH	Sunlord
C1	Matching network capacitor, ±0.25 pF, 0402 NP0, 50 V 4.7 2.7		pF	-	
C2	Matching network capacitor, ±0.25 pF, 0402 NP0, 50 V	3		pF	-
C3	Supply power filtering capacitor, $\pm 20\%$, 0603 X7R, 25 V	0.1		uF	-
C4 ^[1]	Gain control filtering capacitor, ±20%, 0603 X7R, 25 V	4.7 ^[1]	1 ^[1]	uF	-
C5	Data filtering capacitor, ±20%, 0603 X7R, 25 V	0.47		uF	-
R1	Resistor, 5%, 1/8W, 0603	47		Ω	-
U1	CMT2220LS, 300 - 480 MHz OOK receiver with 3.0 - 5.5 V supply power		-	-	CMOSTEK

Table 6. Typical Application BOM (Matching to 315 / 433.92 MHz)

Notes:

[1]. The value of the gain control filtering capacitor will affect the receiver startup time much. Users can select an appropriate gain control filter capacitor (CAGC) according to the notes information specified in <u>Table 3</u>.

4 Typical Performance

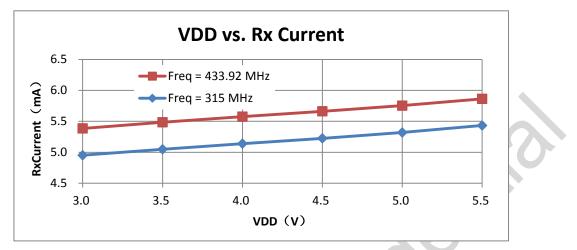


Figure 3. Rx Current vs. VDD

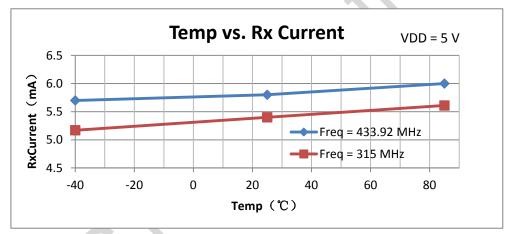
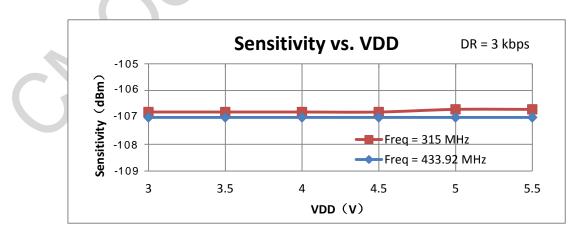
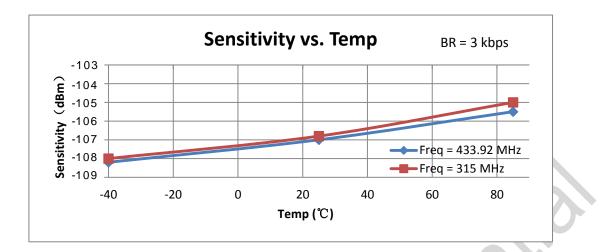
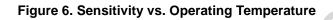





Figure 4. Rx Current vs. Operating Temperature

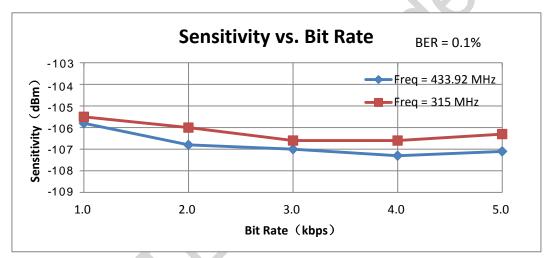
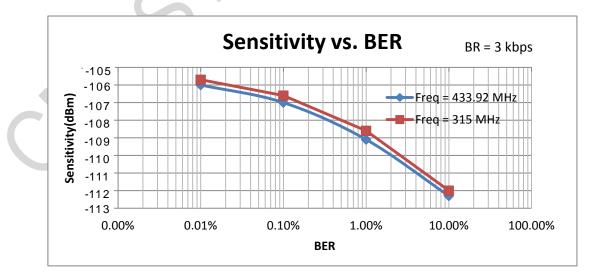



Figure 7. Sensitivity vs. Bit Rate

5 Function Description

As an integrated receiver with digital-analog hybrid design, the CMT2220LS chip applies LNA + Mixer + IF Filter + Limiter + PLL low-IF receiving architecture. It requires to connect 2 capacitors CAGC externally to assist in fulfilling the stability of the automatic gain control loop and the function of received data filtering.

5.1 Crystal Frequency and RF Frequency Point

The CMT2220LS applies a single-ended crystal oscillation circuit with the load capacitor required for crystal oscillation integrated in the chip. It is recommended to use a crystal with an accuracy of \pm 20 ppm, an equivalent resistance of less than 60 Ω , and a load capacitance of 15 pF. Since crystal parasitic capacitance differs in different packaging specifications, users should pay more attention when selecting crystals to avoid receiver performance degradation caused by too much variance between the actual oscillation frequency and the target frequency value.

The CMT2220LS can operate in any frequency point within the free range 300 - 480 MHz. Users can fulfill different frequency points through selecting corresponding crystals. For instance, for a device operating at 433.92 MHz, the required crystal frequency is 13.52127 MHz. The formula between a specific RF operating frequency and the corresponding crystal frequency is as follows.

$$F_{XTAL} = \frac{13.52127}{433.92} F_{RF}$$

For example, for a CMT2220LS chip desired to operating at 315 MHz, the required crystal frequency is 9.81563 MHz.

5.2 Receiver IF Bandwidth

When the chip is operating at 433.92 MHz, the corresponding IF bandwidth is 510 kHz. The IF bandwidth is adjusted automatically with same proportion according to selected crystal frequency. The formula between a specific RF operating frequency and the corresponding IF bandwidth is as follows.

$$BW_{RF} = 1.175332e^{-3} * F_{RF}$$

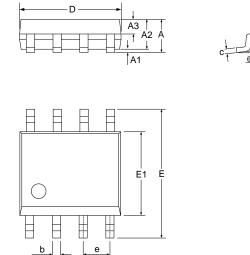
For example the IF bandwidth is adjusted to 370 kHZ when the chip is operated at 315 MHz.

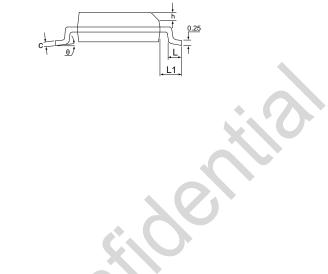
5.3 Considerations of CAGC Selection

The CAGC pin is the port for automatic gain control of receiving link, connecting with a filtering capacitor externally. The value of CAGC will affect the chip startup time, namely the larger the CAGC value, the longer the startup time. Suggest users choose a larger capacitor value in AC to DC applications while choose 1 uF or slightly smaller one in DC power supply applications.

Particularly, for CMT2220LS batches with the date code of line 2 marking assigned as 2009 or 2010, users should make sure the #7 pin, with pin name NC, is connected to ground on PCB in applications. For the rest of CMT2220LS batches, the #7 pin functions no connection, it's ok to leave it floating in applications.

6 Ordering Information


	Model	Description	Packaging	Packing Option	Operating Condition	Minimum Order Quantity	
CM	[2220LS-ESR ^[1]	300 - 480 MHz OOK receiver	SODe	Tapa and Roal	3.0 - 5.5 V,	2,500	
Civi	2220L3-ESR	with 3.0 - 5.5 V supply power	SOP8 Tape and Reel		- 40 ~ 85 °C	2,500	
Notes: [1]. CMT2220LS refers to model CMT2220LS. E refers to extended Industrial product rating, which supports temperature range from -40 to +85 °C. S refers to the packaging type SOP8. R refers to tape and reel packing type, and the minimum ordering quantity (MOQ) is 2,500 pieces.							


Table 7. Ordering Information

Please visit <u>www.cmostek.com</u> for more product/product line information. Please contact <u>sales@cmostek.com</u>or your local sales representative for sales or pricing requirements.

7 Packaging Information

The packaging information of CMT2220LS is shown in the below figure.

Figure 9. SOP8 Packaging

Table 8. SOP8 Packaging Scale

		Scale (mm)	
Symbol	Min.	Тур.	Max.
А	-	-	1.75
A1	0.10	-	0.225
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39	-	0.48
С	0.21	-	0.26
D	4.70	4.90	5.10
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
е		1.27 BSC	
h	0.25	-	0.50
L	0.50	-	0.80
L1	·	1.05 BSC	
θ	0	-	8°

8 Top Marking

Figure 10. CMT2220LS Top Marking

Marking Method	Laser
Pin 1 Mark	Diameter of the circle = 0.5 mm
Font Height	0.6 mm, align right
Font Width	0.3 mm
Line 1 Marking	CMT2220LS referring to model CMT2220LS
Line 2 Marking	YYWW is the date code assigned by the packaging factory. YY is the last 2 digits of the year. WW is the working week. 123456 is the internal tracing code.

Table 9. Top Marking Information

9 Revise History

Table 10.	Revise	History	Records

Version No.	Chapter	Description	Date
0.5	All	Initial version	2020-03-12
0.6	All	 Change the pin 7 name of CMT2220LS from CTH to NC and change related function descriptions as follows. For CMT2220LS, if the first 4 digits of the batch information in line 2 top mark is 2009 or 2010, the pin 7 is required to be grounded or connected with a capacitor on the PCB when these chips are used. For the rest of all CMT2220LS batches, the function of pin 7 is no connection, so that just leave it floating when these chips are used. Add information for CAGC value affecting on chip startup time. 	2020-04-15
0.7	3	Update R1 resistor description in Table 6.	2020-05-14
0.8	All	Document refining.	2020-07-27
0.9	First page, 1.3, 4 5.3	First page, 1.3, 4: update performance parameter values. Section 5.3, remove the information of capacitor CTH.	2021-06-30
1.0	1.3	Add data for receiver start up time according to different CAGA capacitance values.	2021-09-15

10 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Tel:	+86-755-83231427
Post Code:	518055
Sales:	sales@cmostek.com
Supports:	support@cmostek.com
Website:	www.cmostek.com

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.