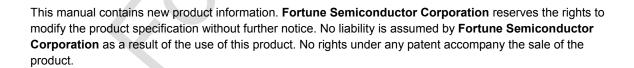
Datasheet

FS8601RA

One Cell Lithium-ion/Polymer Battery Protection IC With Built-in MOSFET



Fortune Semiconductor Corporation

富晶電子股份有限公司

23F,No. 29-5, Sec. 2, Zhongzheng E. Rd., Danshui Dist., New Taipei City 251, Taiwan

Tel.: 886-2-28094742 Fax: 886-2-28094874 www.ic-fortune.com

1. General Description

The FS8601RA battery protection IC is designed to protect lithium-ion/polymer battery from damage or degrading the lifetime due to overcharge, overdischarge, and/or overcurrent for one-cell lithium-ion/polymer battery powered systems, such as cellular phones.

The ultra-small package and less required external components make it ideal to integrate the FS8601RA into the limited space of battery pack. The accurate ±25mV overcharging protection voltage ensures safe and full utilization charging. The very low standby current drains little current from the cell while in storage.

2. Features

- With built-in N-MOSFET of low turn-on resistance.
- Reduction in Board Size due to Miniature Package DFN-5.
- Protection IC :
 - Ultra-Low Quiescent Current at 2.5µA (Vcc=3.9V).
 - Ultra-Low Overdischarge Current at 1.8µA (Vcc=2.0V).
 - Overcharge Protection Voltage

4.28V ± 25mV

■ Overdischarge Protection Voltage

2.4V ± 100mV

Overcurrent Protection Voltage
 150mV ± 15mV

Auto Recovery function

MOSFET:

Rss(ON) < 49mΩ (VGS = 3.7V, ID = 1A)

3. Ordering Information

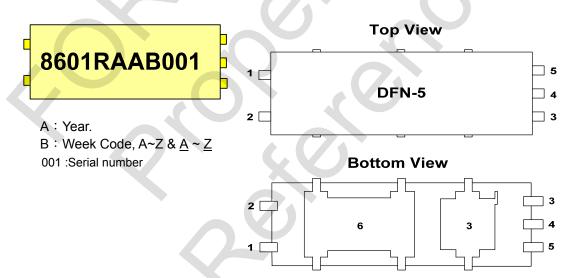
FS8601RA-D (DFN-5 Green-Package)

TEMPERATURE RANGE -40°C~+85°C

4. Applications

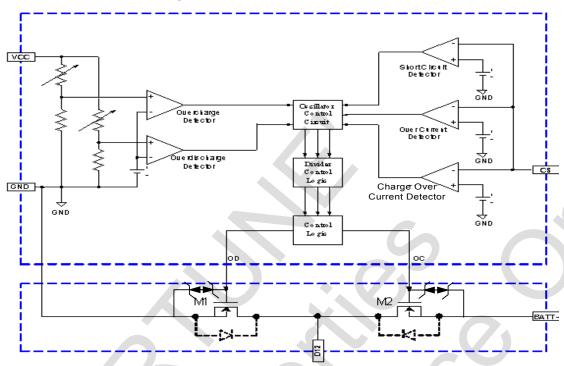
 Protection IC for One-Cell Lithium-lon / Lithium-Polymer Battery Pack

Rev. 1.3 3/13

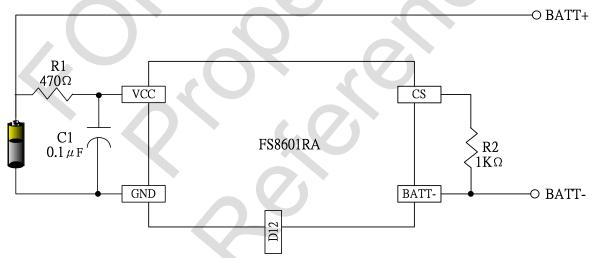


5. Product Name List

Model	Package	detection	Overcharge release voltage [VOCR] (V)	Overdischarge detection voltage [VODP] (V)	Overdischarge release voltage [VODR] (V)	detection	0V change function	Standby function	Built-in N-MOSFET source to source Ron [RSS(ON)] (mΩ)
FS8601RA	DFN-5	4.28±0.025	4.08±0.050	2.40±0.100	2.50±0.100	0.150±15mV	NO	AUTO recovery	< 49


6. Pin Configuration and Package Marking Information

Pin No.	Symbol	Description		
1	NC	NC		
2	GND	Ground pin		
3	BATT-	connect to negative of charger or load		
4	VCC	lower supply, through a resistor (R1)		
5	cs	nput pin for current sense, charger detect		
6	D12	Tow MOSFET common drain connection pin		



7. Functional Block Diagram

8. Typical Application Circuit

Symbol	Purpose	Recommended	Remakes
R1	ESD protection. For power fluctuation.	100~470Ω	Resistance should be as small as possible to avoid lowering of the overcharge detection accuracy caused by VDD pin current. Use 470Ω for better ESD protection.
C1	For power fluctuation.	0.1µF	
R2	Protection for reverse connection of a charger.	1k~2kΩ	Select a resistance as large as possible to prevent large current when a charge is connected in reverse.

Rev. 1.3 5/13

9. Absolute Maximum Ratings

(GND=0V, Ta=25°C unless otherwise specified)

Item	Symbol	Rating	Unit
Input voltage between VCC and GND *	VCC	GND-0.3 to GND+15	V
CS input pin voltage	VCS	VCC -30 to VCC +0.3	V
Operating Temperature Range	TOP	-40 to +85	°C
Storage Temperature Range	TST	-40 to +125	°C
Drain-Source Voltage	VDS	20	V
Gate-Source Voltage	VGS	±12	٧
Continuous Drain Current	ID @TA=25℃	6.5	А
Pulsed Drain Current	IDM	40	А
Total Power Dissipation	PD @TA=25℃	1.4	W
Storage Temperature Range	TSTG	-55 to 150	$^{\circ}$ C
Operating Junction Temperature Rang	TJ	-55 to 150	$^{\circ}$

Note: FS8601RA contains a circuit that will protect it from static discharge; but please take special care that no excessive static electricity or voltage which exceeds the limit of the protection circuit will be applied to it.

10. Electrical Characteristics

(Ta=25°C unless otherwise specified)

PARAMETER	TEST CONDITIONS	SYMBOL	Min	Тур	Max	UNIT	
Supply Current	VCC=3.9V	ICC		2.5	5.2	μΑ	
Overdischarge Current	VCC=2.0V	IOD		1.8	4.5	μΑ	
Overcharge Protection Voltage	FS8601RA	VOCP	4.255	4.280	4.305	V	
Overcharge Release Voltage		VOCR	4.030	4.080	4.130	٧	
Overdischarge Protection Voltage		VODP	2.300	2.400	2.500	V	
Overdischarge Release Voltage		VODR	2.400	2.500	2.600	٧	
Overcurrent Protection Voltage		VOIP (VOI1)	0.135	0.150	0.165	V	
Short Current Protection Voltage	VCC=3.6V	VSIP (VOI2)	0.60	0.70	0.80	٧	
Charger over current detection voltage	VDD=3.6V	VCOIP	-0.120	-0.100	-0.080	V	
Faulty charger detect voltage	0	Vdet	6.0	8.0	10.0	٧	
Faulty charger recovery voltage		Vrec	5.8	7.3	8.8	٧	
0V charging prohibit		VST	0.65	0.95	1.25	V	
Overcharge Delay Time		TOC	130	200	280	ms	
Overdischarge Delay Time	VCC=3.6V to 2.0V	TOD	65	100	140	ms	
Overcurrent Delay Time (1)	VCC=3.6V	TOI1	13.3	20.0	26.5	ms	
Overcurrent Delay Time (2)	VCC=3.6V	TOI2	0.60	1.0	1.80	ms	
Charge over current delay time	VCC=3.6V	Tdet	5.10	8.50	12.75	ms	
N-MOSFET have low turn-on resistance							
Drain-Source Breakdown Voltage (BATT- to D12 / D12 to GND)	Vgs=0V,I _D =250 μ A	BVDSS	20			V	
Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =1mA	$\Delta BV_{DSS}/\Delta$ T_{j}		0.1		V/°C	
Static Source-Source On-Resistance (BATT- to GND)	Vgs=3.7V,lp=1A			41	49	$m\Omega$	
Static Source-Source On-Resistance (BATT- to GND)	Vgs=2.7V,ID=1A	Rss(on)		51	70	mΩ	
Drain-Source Leakage Current) (BATT- to D12 / D12 to GND)	V _{DS} =16V,V _{GS} =0V	loss (Tj=25°C)			1	uA	

Rev. 1.3 7/13

11. Description of Operation

Normal Condition

If VODP<VCC<VOCP and VCH<VCS<VOI1, M1 and M2 are both turned on. The charging and discharging processes can be operated normally.

Overcharge Protection

When the voltage of the battery cell exceeds the overcharge protection voltage (VOCP) beyond the overcharge delay time (TOC) period, charging is inhibited by turning off of the charge control MOSFET. The overcharge condition is released in two cases:

The voltage of the battery cell becomes lower than the overcharge release voltage (VOCR) through self-discharge.

The voltage of the battery cell falls below the overcharge protection voltage (VOCP) and a load is connected.

When the battery voltage is above VOCP, the overcharge condition will not release even a load is connected to the pack.

Overdischarge Protection

When the voltage of the battery cell goes below the overdischarge protection voltage (VODP) beyond the overdischarge delay time (TOD) period, discharging is inhibited by turning off the discharge control MOSFET.

The default of overdischarge delay time is 100ms. Inhibition of discharging is immediately released when the voltage of the battery cell becomes higher than overdischarge release voltage (VODR) through charging.

Overcurrent Protection

In normal mode, the FS8601RA continuously monitors the discharge current by sensing the voltage of CS pin. If the voltage of CS pin exceeds the overcurrent protection voltage (VOIP) beyond the overcurrent delay time (TOI1) period, the overcurrent protection circuit operates and discharging is inhibited by turning off the discharge control MOSFET. The overcurrent condition returns to the normal mode when the load is released or the impedance between BATT+ and BATT- is larger than $500k\Omega$. The FS8601RA provides two overcurrent detection levels (0.15V and 0.7V) with two overcurrent delay time (TOI1 and TOI2) corresponding to each overcurrent detection level.

Charge Detection after Overdischarge

When overdischarge occurs, the discharge control MOSFET turns off and discharging is inhibited. However, charging is still permitted through the parasitic diode of MOSFET. Once the charger is connected to the battery pack, the FS8601RA immediately turns on all the timing generation and detection circuitry. Charging progress is sensed if the voltage between CS and GND is below charge detection threshold voltage (VCH).

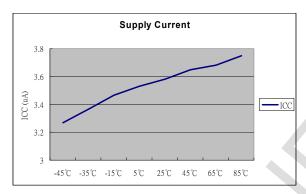
Auto Power Down recovery

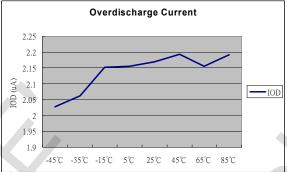
The IC continues to operate even after the overdischarge state has been entered. The battery voltage rising to the overdischarge release voltage(VODR) or higher is the only required condition for the IC to return to the normal state.

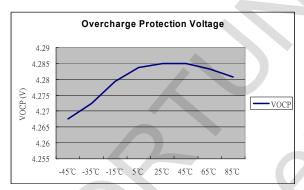
12. Design Guide

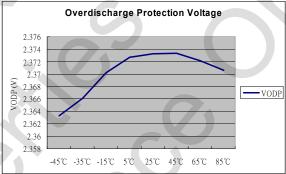
Suppressing the Ripple and Disturbance from Charger

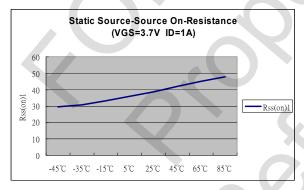
To suppress the ripple and disturbance from charger, connecting R1 and C1 to VCC is recommended.

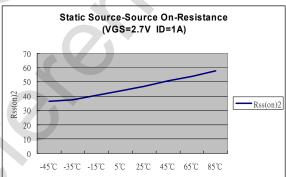

Protection the CS pin

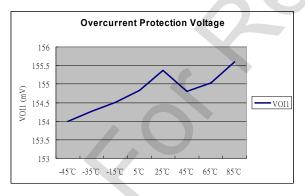

R2 is used for latch-up protection when charger is connected under overdischarge condition and overstress protection at reverse connecting of a charger.

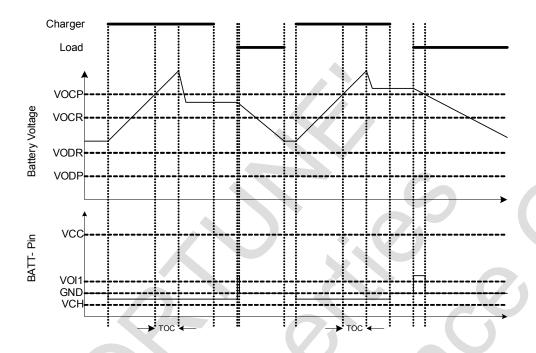




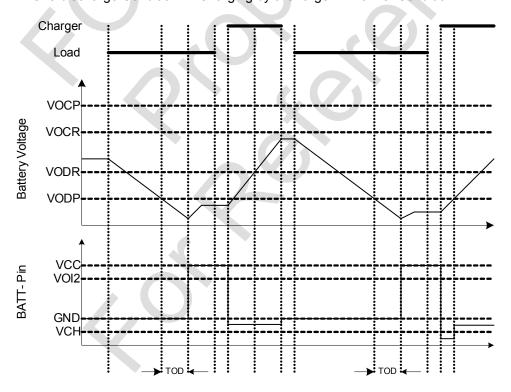

13. Typical Operating Characteristics





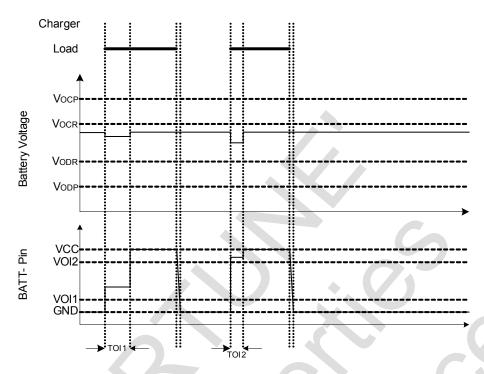


Rev. 1.3 10/13



14. Timing Diagram

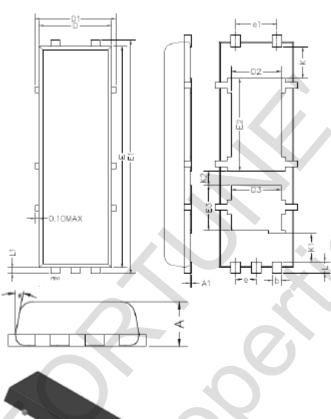
Overcharge Condition \rightarrow Load Discharging \rightarrow Normal Condition



Overdischarge Condition → Charging by a Charger → Normal Condition

Fortúne

Over Current Condition → Normal Condition



Rev. 1.3 12/13

Fortûne

15. Package Outline

DFN-5

Note:

All dimensions do not include mold flash, gate burrs or protrusions.

Unit: mm

Symbol	Min.	TYP.	Max.
Α	0.58	0.63	0.68
A1	0.00	0.02	0.05
b	0.18	0.23	0.28
D	1.70	1.8	1.90
E	5.40	5.50	5.60
D1	,	-	2.10
E1	5.70	5.80	5.90
D2	1.10	1.20	1.30
E2	2.10	2.25	2.35
D3	1.10	1.20	1.30
E3	1.00	1.10	1.20
е		0.50 BSC	
e1	1.00 BSC		
K	0.67	0.77	0.87
K1	0.59	0.69	0.79
K2	0.25	0.35	0.45
L	0.25	0.35	0.45
L1		0.15 BSC	
θ	10°	12°	14°

16. Revision History

Version	Date	Page	Description	
1.0	2011/07/25	All	New release	
1.1	2012/07/19	13	Revise package outline	
1.2	2012/09/12	13	Revise package outline	
1.3	2014/01/09	4	Revise VOI1 Specified Unit	