Datasheet

FS91M68

8-bit MCU with 1k program ROM,
64-byte RAM,
1 R2F module and 3×13 LCD driver.

Fortune Semiconductor Corporation
富晶電子股份有限公司
23F．，No．29－5，Sec．2，Zhongzheng E．Rd
Danshui Town，Taipei County 251，Taiwan
Tel．：886－2－28094742
Fax ：886－2－28094874
www．ic－fortune．com

This manual contains new product information．Fortune Semiconductor Corporation reserves the rights to modify the product specification without further notice．No liability is assumed by Fortune Semiconductor Corporation as a result of the use of this product．No rights under any patent accompany the sale of the product．

Contents

1. GENERAL DESCRIPTION 4
2. FEATURES 4
3. APPLICATIONS 4
4. ORDERING INFORMATION 4
5. PAD ASSIGNMENT5
6. PIN DESCRIPTION 5
7. FUNCTIONAL BLOCK DIAGRAM 6
8. TYPICAL APPLICATION CIRCUIT7
8.1 Digital Clinical Thermometer 7
9. ELECTRICAL CHARACTERISTICS 8
9.1 Absolute Maximum Ratings 8
9.2 D.C. Characteristics 8
9.3 A.C. Characteristics8
10. FUNCTION DESCRIPTION. 9
10.1 CPU Core 9
10.1.1 Program Memory Organization 9
10.1.2 Data Memory Organization 9
10.2 Low Battery Detection 11
10.3 I/O Port 11
10.4 R2F Conversion Module 13
10.5 LCD Driver 15
11. INSTRUCTION SET 16
11.1 Instruction Set Summary 16
12. INSTRUCTION DESCRIPTION 17
13. REVISION HISTORY 24

1. General Description

The FS91M68 is a 8 -bit high performance and cost-efficient microcontroller with one R2F module and 3×13 LCD driver. The device is suited for use in low power LCD applications such as: thermometers etc.

2. Features

- 8-bit microcontroller.
- Embedded 1k-word ROM and 64-byte RAM.
- 1.5 V battery operation, with about $40 \mu \mathrm{~A}$ (Typ.) operation current, and $0.2 \mu \mathrm{~A}$ (Typ.) sleep mode current.
- One R2F (Resistance to Frequency) conversion module for sensor and reference resistors.
- One high-speed comparator and one 16 -bit counter with programmable gate time select.
- Build-in voltage doubler for $1 / 3$ duty, $1 / 2$ bias 3×13 LCD driver.
- Input port : 4-bit; In / Out port : 4-bit
- Two buzzer outputs.
- Build in low battery detector (LVD).
- Package : Dice form (36 pins), 44-pin LQFP.

3. Applications

- Clinical thermometer.
-R/C Type Sensor Measurement.

4. Ordering Information

Product Number	Package Type
FS91M68-nnnV	Dice form of 36 pin
FS91M68-nnnV-PCD	44 pin QFP

Note1: Code number "nnnV" is assigned for customer; "nnn" = 001~999; "V" means Version = A~Z.

5. Pad Assignment

Figure 5-1 : FS91M68 pad assignment

6. Pin Description

Name	In/Out	Pad NO.	Description
RF	1	1	Reference resistor connection
RS	I	2	Sensor resistor connection
VDD	1	3	Positive input of power supply (1.5V)
RST	1	4	CPU Reset Pin
VSS	1	5	Negative input of power supply
TST	1	6	Test pin for IC
RP	I/O	7	System oscillator external resistor connection (450k)
RN	I/O	8	System oscillator external resistor connection (450k)
COM1~3	0	9~11	LCD common driver
SEG1~13	0	12~24	LCD segment driver
C512	I/O	25	Voltage doubler capacitor negative terminal
CAP	I/O	26	Voltage doubler capacitor positive terminal
VEE	I/O	27	Voltage doubler output (+3.0V)
PT1[7]	I/O	28	I/O port shared with the positive buzzer output
PT1[6]	I/O	29	I/O port shared with the negative buzzer output
PT1[5]	I/O	30	I/O port
PT1[4]	I/O	31	I/O port
PT1[3]	1	32	Input port
PT1[2]	1	33	Input port
PT1[1]	I	34	Input port
PT1[0]	1	35	Input port
SC	1	36	Comparator input

7. Functional Block Diagram

Figure 7-1 : FS91M68 function block

8. Typical Application Circuit

Digital Clinical Thermometer

Figure 8-1 : FS91M68 application circuit

9. Electrical Characteristics

Absolute Maximum Ratings

Table 9-1 Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage to Ground Potential	-0.3 to 1.65	V
Applied Input/Output Voltage	-0.3 to VDD +0.15	V
Ambient Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
Soldering Temperature, Time	$260^{\circ} \mathrm{C}, 10 \mathrm{Sec}$	

D.C. Characteristics

Table 9-2 D.C. Characteristics (VdD=1.5V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Parameter		Test Condition	Min	Typ	Max	Units
VDD	Recommended Voltage	Operation		1.2	1.5	1.65	V
IDD	Supply Current		CPU, R2F On with Fsys $=32 \mathrm{KHz}$		40	60	$\mu \mathrm{A}$
ISTB	Standby Current		CPU sleep, R2F and LCD off	0.1	0.2	1.0	$\mu \mathrm{A}$

A.C. Characteristics

Table 9-3 A.C. Characteristics ($\mathrm{V} D \mathrm{D}=1.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Min	Typ	Max	Units
Fsys	System Clock	Rsys $=450 \mathrm{k}$, VDD $=1.5 \mathrm{~V}$	25.6	32	38.4	KHz

10. Function Description

CPU Core

10.. 1 Program Memory Organization

CPU has a 10-bit program counter capable of addressing 1 K word program memory space. The reset vector is at 0000 h and the interrupt vector is at 0004 h .

Figure 10-1 : Program memory map

10.. 2 Data Memory Organization

Address	Name	Content							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
000H	IND0	Use contents of FSR0 to address data memory							
001H	IND1	Use contents of FSR1 to address data memory							
002H	FSR0	-	Indirect data memory, address point 00H; 7-bit only						
003H	FSR1	-	Indirect data memory, address point 00H; 7-bit only						
004H	STATUS	-	-	-	-	-	-	C	Z
005H	WORK	WORK register							
006H	INTF	-	-	-	-	-	-	EOIF	TMIF
007H	INTE	GIE	-	-	-	-	-	EOIE	TMIE
008H	PT1	PT1[7 : 0]							
009H	PT1EN	PT1EN[7 : 4]				-	-	-	-
00AH	PT1PU	PT1PU[7 : 0]							
00EH	PT1MR	BPE2	BPE1	CH_S	RF_EN	-	-	-	-
010H	LCD0	-	LCDEN	SEG2[2 : 0]			SEG1[2:0]		
011H	LCD1	-	-	SEG4[2: 0]			SEG3[2 : 0]		
012H	LCD2	-	-	SEG6[2 : 0]			SEG5[2: 0]		
013H	LCD3	-	-	SEG8[2 : 0]			SEG7[2: 0]		

Address	Name	Content							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
014H	LCD4	-	-	SEG10[2 : 0]			SEG9[2 : 0]		
015H	LCD5	-	-	SEG12[2: 0]			SEG11[2:0]		
016H	LCD6	-	-	-	-	-	SEG13[2: 0]		
018H	CKCON	LCD_S	PMPEN	PCK_S	BP_S	TMRST	GT_S[2 : 0]		
019H	TMCNTH	TMCNT[15: 8]							
01AH	TMCNTL	TMCNT[7 : 0]							
01BH	RSCNTH	RSCNT[15 : 8]							
01CH	RSCNTL	RSCNT[7 : 0]							
01DH	LowBatDct	IbEN	lowPwr	-	-		-	BiasSEL1	BiasSELO
$40 \mathrm{H} \sim 7 \mathrm{FH}$		General Data Memory							

- INDO: Indirect addressing mode address 0 .
- IND1: Indirect addressing mode address 1.
- FSRO: Indirect addressing mode point 0 .
- FSR1: Indirect addressing mode point 1.
. C: Carry flag.
. Z: Zero flag.
- EOIF, EOIE: PT1.0 external interrupt flag and enable.
- TMIF, TMIE: 8-bit Timer interrupt flag and enable.
- GIE: Global interrupt enable.

Low Battery Detection

Address	Name	Content							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
01DH	LowBatDct	IbEN	lowPwr	-	-	-	-	BiasSEL1	BiasSELO

When resetting, lbEN=1, [BiasSEL1,BiasSEL0]=[0,0].

- "lbEN=1" enables low batery detection, "lbEN=0" disables low batery detection.
- When reading LowBatDct, lowPwr=1 is normal, lowPwr=0 indicates it is under preset low voltage.
- Low Battery Detection option table :

BiasSEL1	BiasSELO	Detect Voltage
0	0	1.329 V
0	1	1.293 V
1	0	1.260 V
1	1	1.224 V

***For various Low Voltage Detection option, the voltage detected might be different due to the slight variation of the IC process.
I/O Port

Address	Name	Content							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
008H	PT1	PT1[7 : 0]							
009H	PT1EN	PT1EN[7 : 4]					-	-	-
00AH	PT1PU	PT1PU[7 : 0]							
00EH	PT1MR	BPE2	BPE1	CH_S	RF_EN	-	-	-	-

-PT1[3: 0] are input ports, with pull-up resistor enable control.

- PT1[7:4] are I/O ports, when PT1EN[7:4] $=0, \mathrm{PT} 1[7: 4]$ will be the input ports.
when PT1EN[7:4] =1,PT1[7:4] will be the output ports
- When system reset or initial start-up, the default value of PT1EN[*] is 0 .

PT1EN[*]	PT1[*] setting
0	Input port
1	Output port

- When PT1PU[N]=0, PT1[N] has no pull-up resister ; When PT1PU[N]=1, PT1[N] has pull-up resister

PT1PU[*]	PT1[*] setting
0	Internal pull-up disable
1	Internal pull-up enable

Figure 10-2 : I/O ports

- PT1[7: 0] have Schmitt-trigger inputs.
- When PT1[0] is set as an interrupt input, negative edge interrupt has absolute high priority, independent of GIE's control.
- $\mathrm{BPE} 2=1$ \& PT1EN[7]=1: PT1[7] is used as the positive input for a buzzer. BPE1=1 \& PT1EN[6]=1: PT1[6] is used as negative input of the buzzer. When system reset or initial start-up, the default value of BPE[*] is 0 .

BPE1	PT1EN[6]	PT1[6] setting
1	1	PT1[6] is used as the negative input of the buzzer
BPE2	PT1EN[7]	PT1[7] setting
1	1	PT1[7] is used as the positive input of the buzzer

- RF_EN enables R/F (Resistor to Frequency) switch module.
- CH _S $=0$ selects reference resistor (RF part) oscillator, CH _S=1 selects sensor resistor (RS part) oscillator.

FS91M68

R2F Conversion Module

Address	Name	Content							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
00EH	PT1MR	BPE2	BPE1	CH_S	RF_EN	-	-	-	-
018H	CKCON	LCD_S	PMPEN	PCK_S	BP_S	TMRST	GT_S[2: 0]		
019H	TMCNTH	TMCNT[15:8]							
01AH	TMCNTL	TMCNT[7:0]							
01BH	RSCNTH	RSCNT[15:8]							
01CH	RSCNTL	RSCNT[7 : 0]							
01DH	LowBatDct	IbEN	lowPwr	-	-	-	-	BiasSEL1	BiasSELO

- RF_EN enables R/F (Resistor to Frequency) switch module.
- CH _S $=0$ selects reference resistor (RF part) oscillator, CH _S=1 selects sensor resistor (RS part) oscillator.
-LCD_S : LCD clock setup.
-PMPEN : Clock enable in step-up circuit.
-PCK_S : Clock setup in step-up circuit.
-BP_S : Buzzer clock setup.
- TMCNT is the Timer for Gate time; RSCNT is The Counter for RF module.
- GT_S is for Gate time setting of RF module, please refer to the table below.
-TMRST : " 0 " clears all counter and stops counting;" $0 \rightarrow 1$ " starts to count until Gate time interrupt occurs.
When TMCNT re-counts, TMRST must be set as 0 first, so TMCNT and RSCNT will be cleared as 0 . When TMRST is set as 1, TMCNT and RSCNT start counting until TMCNT[N]1 $\rightarrow 0$. Then TMCNT and RSCNT stop counting and store the value at the same time.

Figure 10-4 R2F Conversion Module

fortüne

-R2F module Gate time setting :

GT_S[2:0]	TMCNT[N]	Gate time(Hz)
000	8	64
001	9	32
010	10	16
011	11	8
100	12	4
101	13	2
110	14	1
111	15	0.5

LCD Driver

	Name	Content							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
010H	LCDO	-	LCDEN	SEG2[2 : 0]			SEG1[2:0]		
011H	LCD1	-	-	SEG4[2: 0]			SEG3[2 : 0]		
012H	LCD2	-	-	SEG6[2 : 0]			SEG5[2: 0]		
013H	LCD3	-	-	SEG8[2 : 0]			SEG7[2 : 0]		
014H	LCD4	-	-	SEG10[2 : 0]			SEG9[2 : 0]		
015H	LCD5	-	-	SEG12[2 : 0]			SEG11[2 : 0]		
016H	LCD6	-	-	-	-	-	SEG13[2: 0]		

- LCDEN option table :

LCDEN	LCD display
0	Disable
1	Enable

11. Instruction Set

The FS91M68 instruction set consists of 36 instructions. Each instruction is a 16-bit word with an OPCODE and one or more operands. The detail descriptions are below.

Note: FS91M68 does not have HALT instruction to avoid the system error occurrence when fast releasing and plugging-in the battery repeatedly.

Instruction Set Summary

Table 11-1: FS91M68 Instruction Set

Instruction	Operation	Cycle=Fsys/4	Flag
ADDLW k	$[\mathrm{W}] \leftarrow[\mathrm{W}]+\mathrm{k}$	1	C, DC, Z
ADDPCW	$[\mathrm{PC}] \leftarrow[\mathrm{PC}]+1+[\mathrm{W}]$	2	None
ADDWF f, d	[Destination] $\leftarrow[\mathrm{f}]+[\mathrm{W}]$	1	C, DC, Z
ADDWFC f, d	$[$ Destination $] \leftarrow[\mathrm{f}]+[\mathrm{W}]+\mathrm{C}$	1	C, DC, Z
ANDLW k	[W] \leftarrow [W] AND k	1	Z
ANDWF f, d	[Destination] \leftarrow [W] AND [f]	1	Z
BCF f, b	$[\mathrm{f}<\mathrm{b}>$] $\leftarrow 0$	1	None
BSF f, b	$[\mathrm{f}<\mathrm{b}>] \leftarrow 1$	1	None
BTFSC f, b	Skip if [$\mathrm{f}<\mathrm{b}>$] = 0	1,2	None
BTFSS f, b	Skip if [$\mathrm{f}<\mathrm{b}>$] = 1	1,2	None
CALL k	Push PC + 1 and GOTO k	2	None
CLRF f	$[f] \leftarrow 0$	1	Z
CLRWDT	Clear watch dog timer	1	None
COMF f, d	$[\mathrm{f]} \leftarrow \mathrm{NOT}([\mathrm{ff})$	1	Z
DECF f, d	[Destination] $\leftarrow[\mathrm{f}]-1$	1	Z
DECFSZ f, d	$[$ Destination $] \leftarrow[\mathrm{f}]-1$, skip if the result is zero	1, 2	None
GOTO k	$\mathrm{PC} \leftarrow \mathrm{k}$	2	None
INCF f, d	[Destination] $\leftarrow[f]+1$	1	Z
INCFSZ f, d	[Destination] $\leftarrow[f]+1$, skip if the result is zero	1, 2	None
IORLW k	$[\mathrm{W}] \leftarrow[\mathrm{W}] \mid \mathrm{k}$	1	Z
IORWF f, d	$[$ Destination $] \leftarrow[\mathrm{W}] \mid[f]$	1	Z
MOVFW f	[W] $\leftarrow[\mathrm{f}]$	1	None
MOVLW k	[W] $\leftarrow \mathrm{k}$	1	None
MOVWF f	$[f] \leftarrow[\mathrm{W}]$	1	None
NOP	No operation	1	None
RETFIE	Pop PC and GIE = 1	2	None
RETLW k	RETURN and $\mathrm{W}=\mathrm{k}$	2	None
RETURN	Pop PC	2	None
RLF f, d	$[$ Destination $<n+1>] \leftarrow[f<n>]$	1	C,Z
RRF f, d	[Destination<n-1>] $\leftarrow[f<n>]$	1	C, Z
SLEEP	Stop OSC	1	PD
SUBLW k	[W] $\leftarrow \mathrm{k}-\mathrm{LW}]$	1	C, DC, Z
SUBWF f, d	$[$ Destination $] \leftarrow[\mathrm{f}]-[\mathrm{W}]$	1	C, DC, Z
SUBWFC f, d	[Destination] $\leftarrow[\mathrm{f}]-[\mathrm{W}]-\mathrm{C}$	1	C, DC, Z
XORLW k	$[\mathrm{W}] \leftarrow[\mathrm{W}]$ XOR k	1	Z
XORWF f, d	[Destination] $\leftarrow[\mathrm{W}]$ XOR [\dagger]	1	Z

Note :

-f : memory address (00h ~ 7Fh).

- w : work register.
-k : literal field, constant data or label.
- d : destination select: $d=0$ store result in W, $\mathrm{d}=1$: store result in memory address f .
-b : bit select (0~7).
- [f] : the content of memory address f .
-PC : program counter.
. C : Carry flag
-DC : Digit carry flag
- Z : Zero flag
-TO : watchdog time out flag
-WDT : watchdog timer counter

12. Instruction Description

(By alphabetically)

ADDLW	Add Literal to W
Syntax:	ADDLW
	$0 \leq \mathrm{k} \leq \mathrm{FFh}$
Operation:	$[\mathrm{W}] \leftarrow[\mathrm{W}]+\mathrm{k}$
Flag Affected:	C, DC, Z
Description:	The content of Work register add literal " k " in Work register
Cycle:	1
Example:	Before instruction: W = 08h
	After instruction: $W=10 h$

ADDWF	Add W to f
Syntax:	ADDWF f, d
	$0 \leq f \leq F F h$
	$\mathrm{d} \in[0,1]$
Operation:	[Destination] $\leftarrow[\mathrm{f}]+[\mathrm{W}]$
Flag Affected: Description:	C, CD, Z
	Add the content of the W register
	stored in the W register. If d is 1 , the result is stored back in f.
Cycle:	1
Example 1:	Before instruction:
ADDWF OPERAND, 0	OPERAND $=$ C2h
	$\mathrm{W}=17 \mathrm{~h}$
	After instruction:
	OPERAND $=$ C2h
	W = D9h
Example 2:	Before instruction:
ADDWF OPERAND, 1	OPERAND $=$ C2h
	$\mathrm{W}=17 \mathrm{~h}$
	After instruction:
	OPERAND = D9h
	$\mathrm{W}=17 \mathrm{~h}$

ADDPCW	Add W to PC
Syntax:	ADDPCW
Operation:	$[\mathrm{PC}] \leftarrow[\mathrm{PC}]+1+[\mathrm{W}],[\mathrm{W}]<79 \mathrm{~h}$
	$\begin{aligned} & {[\mathrm{PC}] \leftarrow[\mathrm{PC}]+1+([\mathrm{W}]-100 \mathrm{~h}),} \\ & \text { otherwise } \end{aligned}$
Flag Affected	None
Description:	The relative address PC + $1+\mathrm{W}$ are loaded into PC
Cycle:	
Example 1:	Before instruction:
ADDPCW	$\mathrm{W}=7 \mathrm{Fh}, \mathrm{PC}=0212 \mathrm{~h}$
	After instruction: $P C=0292 h$
Example 2:	Before instruction:
ADDPCW	W = 80h, PC = 0212h
	After instruction:
	$\mathrm{PC}=0193 \mathrm{~h}$
Example 3:	Before instruction:
ADDPCW	$\mathrm{W}=\mathrm{FEh}, \mathrm{PC}=0212 \mathrm{~h}$
	After instruction:
	$\mathrm{PC}=0211 \mathrm{~h}$

ADDWFC	Add W, f and Carry
Syntax:	ADDWFC f, d
	$0 \leq f \leq F F h$
	$\mathrm{d} \in[0,1]$
Operation:	$[$ Destination $] \leftarrow[\mathrm{f}]+[\mathrm{W}]+\mathrm{C}$
Flag Affected:	C, DC, Z
Description:	Add the content of the W register, [f] and Carry bit.
	If d is 0 , the result is stored in the W register.
	If d is 1 , the result is stored back in f.
Cycle:	1
Example:	Before instruction:
ADDWFC OPERAND,1	$\mathrm{C}=1$
	OPERAND $=02 \mathrm{~h}$
	W = 4Dh
	After instruction:
	$C=0$
	OPERAND $=50 \mathrm{~h}$
	W = 4Dh

ANDLW	AND literal with w
Syntax:	ANDLW k
	$0 \leq \mathrm{k} \leq \mathrm{FFh}$
Operation:	$[$ W] $\leftarrow[$ W] AND k
Flag Affected:	Z
Description:	AND the content of the W
	register with the eight-bit literal
	" k ".
	The result is stored in the W
	register.
Cycle:	1
Example:	Before instruction:
ANDLW 5Fh	$\mathrm{W}=$ A3h
	After instruction:
	$\mathrm{W}=03 \mathrm{~h}$

BSF	Bit Set f
Syntax:	BSF $\quad f, b$
	$0 \leq f \leq F F h$
	$0 \leq b \leq 7$
Operation:	$[f] \leftarrow 1$
Flag Affected:	None
Description:	Bit b in $[f]$ is set to 1.
Cycle:	1
Example:	Before instruction:
BSF FLAG, 2	FLAG $=89 \mathrm{~h}$
	After instruction:
	FLAG $=8 \mathrm{Dh}$

ANDWF	AND \mathbf{W} and f
Syntax:	ANDWF f, d $0 \leq \mathrm{f} \leq \mathrm{FFh}$ $\mathrm{d} \in[0,1]$ $[$ Destination $] \leftarrow[$ W] AND [f]
Operation:	

BCF	Bit Clear f	BTFSS	Bit Test skip if Set
Syntax:	BCF f, b	Syntax:	BTFSS f, b
	$0 \leq f \leq F F h$		$0 \leq f \leq F F h$
	$0 \leq b \leq 7$		$0 \leq b \leq 7$
Operation:	$[f] \leftarrow 0$	Operation:	Skip if [f] = 1
Flag Affected:	None	Flag Affected:	None
Description:	Bit b in [f] is reset to 0 .	Description:	If bit 'b' in [f] is 1, the next fetched
Cycle:			instruction is discarded and a
Example:	Before instruction:		NOP is executed instead making
BCF FLAG, 2	FLAG $=8 \mathrm{Dh}$		it a two-cycle instruction.
	After instruction:	Cycle:	1, 2
	FLAG $=89 \mathrm{~h}$	Example:	Before instruction:
		Node BTFSS FLAG, 2	PC = address (Node)
		OP1	After instruction:
		OP2	If FLAG<2> = 0
			PC = address(OP1)
			If $\mathrm{FLAG}<2>=1$
			PC = address(OP2)

MOVFW	Move f to W
Syntax:	MOVFW
	$0 \leq f \leq F F h$
Operation:	$[\mathrm{W}] \leftarrow[\mathrm{f}]$
Flag Affected:	None
Description:	Move data from [f] to the W register.
Cycle:	1
Example:	Before instruction:
MOVFW OPERAND	W = 88h, OPERAND = 23h
	After instruction: W = 23h, OPERAND = 23h

NOP	No Operation		Return from Subroutine
Syntax:	NOP		Return
Operation:	No Operation	Syntax:	Operation:

RLF	Rotate left [f] through Carry	SUBLW	Subtract W from literal
Syntax:	RLF f, d	Syntax:	SUBLW k
	$0 \leq f \leq F F h$	Synax.	$0 \leq \mathrm{k} \leq$ FFh
Operation:	$d \in[0,1]$	Operation:	$[\mathrm{W}] \leftarrow \mathrm{k}-[\mathrm{W}]$
	[Destination<n+1>] $\leftarrow[\mathrm{f}<\mathrm{n}>$]	Flag Affected:	C, DC, Z
	[Destination $<0>] \leftarrow C$	Description:	Subtract the content of the W
Flag Affected:	C, Z		"k". The result is stored in the W
Description:	[f] is rotated one bit to the left		register.
		Cycle:	1
$-\mathrm{C} \longleftarrow \text { Register } \mathrm{f}$	the result is stored in the W register. If d is 1 , the result is stored back in [f$]$.	Example 1:	Before instruction:
		SUBLW 02H	After instruction:
Cycle:	1 ,		$W=01 \mathrm{~h}$
			$C=1$ $Z=0$
RLF OPERAND, 1	Before instruction:		Z = 0
	$W=88 \mathrm{~h}, \mathrm{OPERAND}=\mathrm{E} 6 \mathrm{~h}$	Example 2:	Before instruction:
	After instruction:	S	W $=02 \mathrm{~h}$
	$\mathrm{C}=1$		After instruction: $W=00 h$
	$W=88 \mathrm{~h}, \text { OPERAND }=$		$C=1$
			$Z=1$
		Example 3: SUBLW 02H	Before instruction: $W=03 h$
RRF	Rotate right [f] through Carry		
Syntax:	RRF f, d		W = FFh
	$0 \leq f \leq F F h$		$\mathrm{C}=0$
	$\mathrm{d} \in[0,1]$		$Z=0$
Operation:	[Destination $<n-1>] \leftarrow[f<n>]$$[$ Destination $<7>] \leftarrow C$		
	$C \leftarrow[f<7>]$	SUBWF	Subtract W from f
Flag Affected: Description:	C	Syntax:	SUBWF f, d
	[f] is rotated one bit to the right		$0 \leq f \leq F F h$
	through the Carry bit. If d is 0,		$\mathrm{d} \in[0,1]$
	the result is stored in the W	Operation:	$[$ Destination $] \leftarrow[\mathrm{f}]-[\mathrm{W}]$
	register. If d is 1 , the result is	Flag Affected:	C, DC, Z
	1	Description:	Subtract the content of the W
Cycle:			register from [f]. If d is 0, the
Example: RRF OPERAND, 0	Before instruction:		result is stored in the W register.
	$\mathrm{C}=0$		If d is 1 , the result is stored back
	OPERAND $=95 \mathrm{~h}$		in [f],
	After instruction:	Cycle:	
	$C=1$	Example 1:	Before instruction:
	$W=4 A h, O P E R A N D=95 h$	SUBWF OPERAND, 1	OPERAND $=33 \mathrm{~h}, \mathrm{~W}=01 \mathrm{~h}$
			After instruction:
			OPERAND $=32 \mathrm{~h}$
			$C=1$
SLEEP	Oscillator stop		Z $=0$
Syntax:	SLEEP	Example 2:	Before instruction:
Operation:	CPU oscillator is stopped	SUBWF OPERAND, 1	OPERAND $=01 \mathrm{~h}, \mathrm{~W}=01 \mathrm{~h}$
Flag Affected:	PD		After instruction:
Description:	CPU oscillator is stopped. CPU can be waked up by external interrupt sources.		OPERAND $=00 \mathrm{~h}$
			$\mathrm{C}=1$
			$\mathrm{Z}=1$
Cycle:	1	Example 3:	Before instruction:
Example:	After instruction:	SUBWF OPERAND, 1	OPERAND $=04 \mathrm{~h}, \mathrm{~W}=05 \mathrm{~h}$
SLEEP	PD = 1		After instruction:
	$\mathrm{TO}=0$		OPERAND $=$ FFh
	If WDT causes wake up, TO		$\mathrm{C}=0$
	$=1$		Z $=0$

- Please make sure all interrupt flags are cleared before running SLEEP; "NOP" command must follow HALT and SLEEP commands.

13. Revision History

Ver.	Date	Page	Description
1.0	$2006 / 8 / 17$	All	Initial release
1.1	$2006 / 11 / 9$	5	Pin description redefine
		8	Table 9-2, Units of IDD and ISTB change to be " μA ".
1.2	$2006 / 12 / 21$	7	Figure 8-1, Rst pin must be pull high, connect resistance(10k $\Omega)$ and capacitor(2200pF).
1.3	$2014 / 5 / 22$	2	Revised company address

