

Unipolar Hall Effect Switches

FEATURES

- 3.8 to 40V supply voltage
- High transient voltage protection
- 40mA sinking capability
- High ESD rating
- 3-pin SIP, and SOT23-3 packages are available
- Operate/release points symmetrical around zero gauss
- RoHs compliant

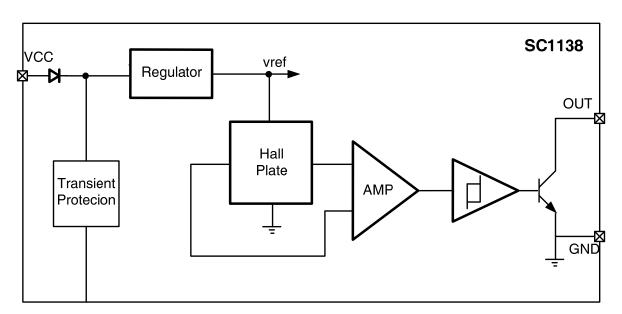
APPLICATIONS

- Brushless DC motor
- Position sensor
- Motor and fan control
- Auto-motive transmission position

DESCRIPTION

The SC1138 Hall-Effect switch series is monolithic integrated circuits with tighter magnetic specifications, designed to operate continuously over extended temperatures to +150 $^{\circ}$ C, and are more stable with both temperature and supply voltage changes. The negative compensation slope is optimized to match the negative temperature coefficient of low-cost magnets.

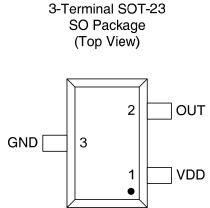
Each device includes a voltage regulator for operation with supply voltages of 3.8 to 40V volts, quadratic Hall-voltage generator, temperature compensation circuitry, small-signal amplifier, Schmitt trigger, and an open-collector output to sink up to 40mA.

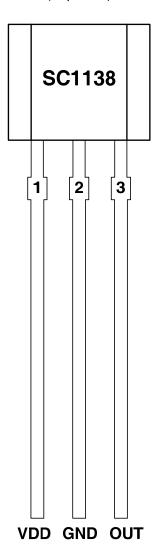

CONTENTS

FEATURES 1 -	Field Direction Definition 7
APPLICATIONS 1 -	Transfer Function7
DESCRIPTION 1 -	Typical Application8
BLOCK DIAGRAM 3 -	PACKAGE INFORMATION(UA)9
ORDERING INFORMATION 3 -	PACKAGE INFORMATION(BU)错误!未定义书签。
TERMINAL DESCRIPTION 4 -	PACKAGE INFORMATION(SO)10
Absolute Maximum Ratings 5 -	REVISON HISTORY 11
ESD Protection 5 -	
ODEDATING CHARACTERISTICS	

BLOCK DIAGRAM

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the Hall probe. This voltage is amplified and switches as a Schmitt-Trigger with open-collector output. A protection diode against reverse power supply is integrated.


ORDERING INFORMATION


Part Number	Packing	Mounting	Ambient,T _A	Marking
SC1138UA	1000 pieces/Bag	SIP3	-40℃ to 150℃	1138
SC1138SO-N	3000 pieces/Reel	SOT23-3	-40℃ to 150℃	1138

TERMINAL DESCRIPTION

3-Terminal SIP UA Package (Top View)

Те	rminal				
Nome	Nur	nber	Туре	Description	
Name	UA	SO			
VDD	1	1	PWR	3.8 to 40 V power supply	
GND	2	3	Ground	Ground terminal	
OUT	3	2	Output	Open-drain output. The open drain requires a pull-up resistor	

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	Vcc	-40 ⁽²⁾	60	V
Output terminal voltage	V out	-0.5	60	V
Output terminal current sink	Isink	0	50	mA
Operating ambient temperature	TA	-40	150	$^{\circ}$ C
Maximum junction temperature	TJ	-55	165	$^{\circ}$ C
Storage temperature	Тѕтс	-65	175	$^{\circ}$

⁽¹⁾ Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD Protection

Human Body Model (HBM) tests according to: standard EIA/JESD22-A114-B HBM

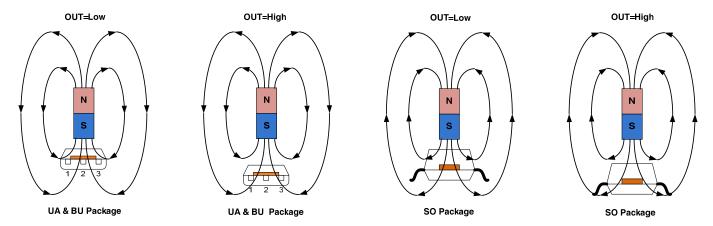
Parameter	Symbol	Min.	Max.	Units
ESD-Protection	V _{ESD}	-2	+2	KV

⁽²⁾ Ensured by design.

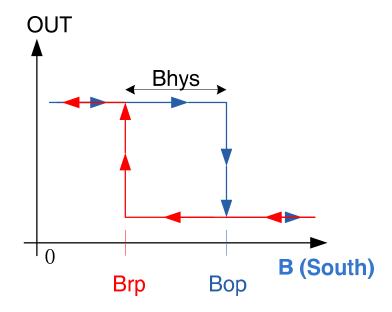
OPERATING CHARACTERISTICS

over operating free-air temperature range (Vcc =5V, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Vcc	Operating voltage (1)	T _J < T _J (Max.)	3.8		40	V
Vccr	Reverse supply voltage	Ta=25°C	-40	1	-	V
Icc	Operating supply current	Vcc=3.8 to 40 V		4.0	10	mA
lar	Off-state leakage current	Output Hi-Z			1	μΑ
Vsat	Output saturation voltage	I ⊲=20mA, T ₄= 25 °C	100	200	300	mV
t r	Output rise time	R1=1Kohm Co=20pF			1.5	μS
t f	Output fall time	R1=1Kohm Co=20pF		ŀ	1.5	μS
Magnetic	Magnetic Characteristics					
f _{BW}	Bandwidth			-	100	kHz
Вор	Operated point	Ta=25°C	20.0	26.0	30.0	mT ⁽²⁾
B _{RP}	Release point	1 A=23 C	15.0	21.0	25.0	mT
Внуѕ	Hysteresis	Bop - Brp		5.0		mT

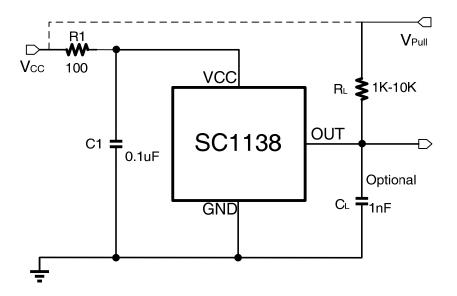

⁽¹⁾ Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

^{(2) 1}mT=10Gs


Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.

Transfer Function

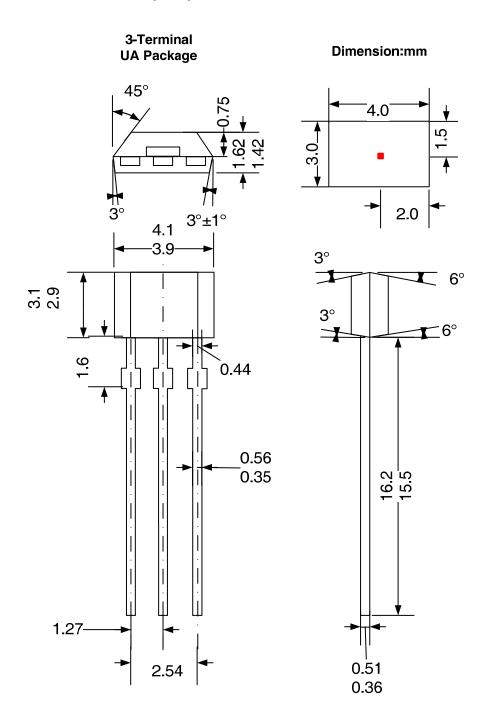

Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

Rev. A/1.0

Typical Application

he SC1134 contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. It is recommended that C1 capacitor be connected to the ground in parallel near the VDD power end of the chip, with a typical value of $0.1\mu F$. At the same time in the external optional series resistor R1 and output capacitance C_L used for enhanced protection circuit, its typical values for $100\,\Omega$ and 1 nF.

The SC1134 device output stage uses an open-drain NMOS, and it is rated to sink up to 20mA of current. For proper operation, calculate the value of the pull-up resistor R_L is required. The size of R_L is a tradeoff between OUT rise time and the load capacity when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching.


Select a value for CL based on the system bandwidth specifications as:

$$CL = \frac{1}{2\pi \times R \times f (Hz)}$$

V_{PULL} is not restricted to VDD, and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.

PACKAGE INFORMATION(UA)

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

PACKAGE INFORMATION(SO)

3-Terminal Dimension:mm **SO Package** 2.926 0.813 0.7 1.625 0.6 1.463 10° 3.02 2.82 **→**I 0.5 0.3 0.6 0.3 9° 10° 1.72 3 1.52 2.6 0.95 0.25BSC 2.0

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

1.8

Where no tolerance is specified, dimension is nominal.

REVISON HISTORY

Revision	Date	Description
RevA1.0	May-06-2020	Preliminary datasheet
RevA1.1	Nov-19-2020	Update format