

Ultra-High Voltage Digital-Latch Hall Effect Sensor

FEATURES

- Ultra-high voltage stress endurance, up to 500V
- High chopping frequency
- Supports a wide voltage range
 - --4.0 to 200V
 - --Operation from unregulated supply
- Wide operating temperature range
- Robust EMC performance
- Solid-state reliability
- Small package
 - --3-pin SIP -(UA)

APPLICATIONS

- Valve and solenoid status
- BLDC motors with sensors
- Proximity sensing
- Tachometers

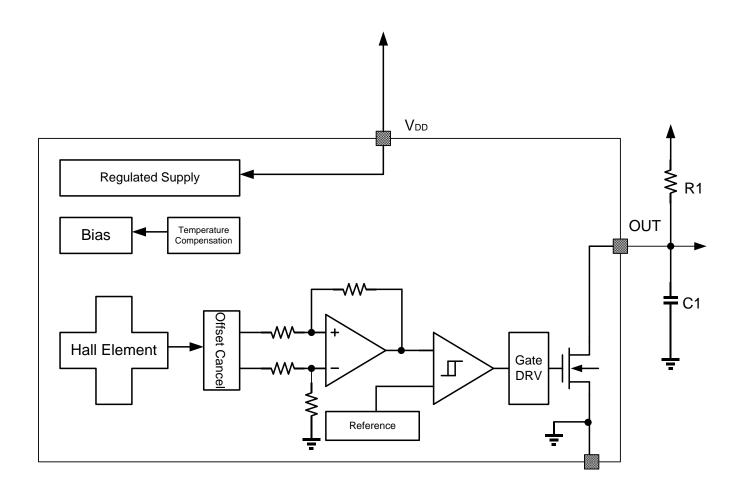
DESCRIPTION

The SC2912 family. produced with Ultra-High voltage BiCMOS technology, is a chopper-stabilized Hall Effect Sensor that offers a magnetic sensing solution with sensitivity stability superior over temperature and integrated protection features.

Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over molding, temperature dependencies, and thermal stress. Each device includes on a single silicon chip a high voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and an open-drain output to sink up to 10mA.

An onboard regulator permits with supply voltages of 4.0V to 200V which makes the device suitable for a wide range of industrial and automotive applications

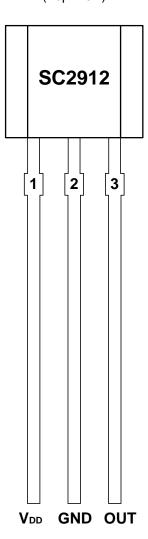
The device is available in a 3-pin SIP package (UA). It's lead (Pb) free, with 100% matte tin lead frame plating



CONTENTS

FEATURES1 -	Magnetic Characteristics7
APPLICATIONS1 -	TYPICAL CHARACTERISTIC8
DESCRIPTION1 -	FUNCTION DESCRIPTION9
BLOCK DIAGRAM 3 -	Field Direction Definition9
ORDERING INFORMATION 3 -	Transfer Function 10
TERMINAL CONFIGURATION 4 -	TYPICAL APPLICATION 11
ABSOLUTE MAXIMUM RATINGS 5 -	PACKAGE INFORMATION (TO-92S-A2) 12
ESD PROTECTION 5 -	PACKAGE INFORMATION (TO-92S-B2) 13
THERMAL CHARACTERISTICS 5 -	REVISON HISTORY 14
OPERATING CHARACTERISTICS 6 -	
Flectrical Characteristics 6 -	

BLOCK DIAGRAM


ORDERING INFORMATION

Part Number	Packing	Mounting	Ambient, T₄	Вор(Тур.)	B _{RP} (Typ.)
SC2912UA	Bulk, 1000 pieces/bag	3-pin SIP	-40°C to 150°C	+2.0mT	-2.0mT

TERMINAL CONFIGURATION

3-Terminal SIP **UA** Package (Top View)

Term	inal	Type	Description
Name	Number	Туре	Description
V_{DD}	1	PWR	4.0V~200 V power supply
GND	2	Ground	Ground terminal
OUT	3	Output	Open-drain output. The open drain requires a pull-up resistor

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	V _{DD}	-0.5 ⁽²⁾	500	V
Output terminal voltage	Vouт	-0.5	500	V
Output terminal current sink	Isink	0	30	mA
Operating ambient temperature	TA	-40	150	$^{\circ}$
Maximum junction temperature	TJ	-55	165	${\mathbb C}$
Storage temperature	Тѕтс	-65	175	${\mathbb C}$

⁽¹⁾ Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD PROTECTION

Human Body Model (HBM) tests according to: standard AEC-Q100-002

Parameter	Symbol	Min.	Max.	Units
ESD-Protection (HBM)	V _{ESD}	-4	+4	K۷

THERMAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Rating	Units
R _θ JA	UA Package thermal resistance	Single-layer PCB, with copper limited to solder pads	166	°C/W

⁽²⁾ Ensured by design.

OPERATING CHARACTERISTICS

Electrical Characteristics

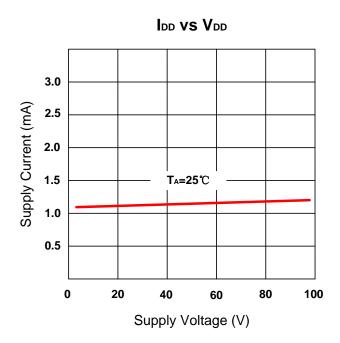
over operating free-air temperature range (V_{DD} = 5.0V, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{DD}	Operating voltage (1)	$T_{J} < T_{J(Max.)}$	4.0		200	V
IDD (off)	Operating aupply aurrent	V _{DD} =4.0 to 200 V, T _A =25 °C	0.8	1.2	2.0	mA
I _{DD} (on)	Operating supply current	V _{DD} =4.0 to 200 V, T _A =25 °C	0.8	1.3	2.0	mA
ton	Power-on time			35	50	μS
IQL	Off-state leakage current	Output Hi-Z			3	μΑ
Б	CCT on registeres	V _{DD} =5V, I _O =10mA, T _A =25°C		40		Ω
RDS (on)	FET on-resistance	V _{DD} =5V, Io=10mA, T _A =125℃		70		Ω
t d	Output delay time	B=BRP to BOP		3	5	μS
t r	Output rise time (10% to 90%)	R1=1Kohm Co=50pF			0.5	μS
t f	Output fall time (90% to 10%)	R1=1Kohm Co=50pF			0.2	μS

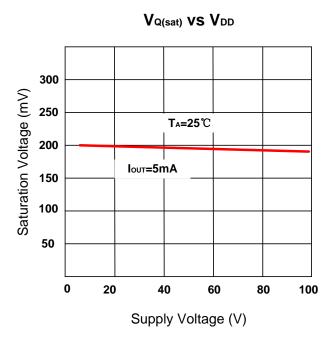
⁽¹⁾ Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

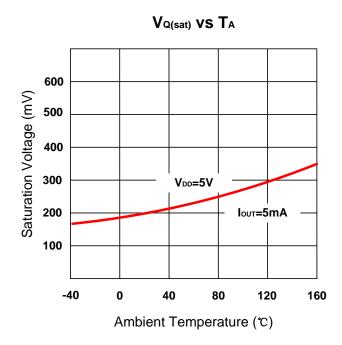
Magnetic Characteristics

over operating free-air temperature range (unless otherwise noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
f _{BW}	Bandwidth				-	kHz
SC2912 -	+7.0 / -7.0 mT					
Вор	Operated point			+2.0	+4.0	mT
B _{RP}	Release point	T _A =-40℃ to 125℃	-4.0	-2.0	-	mT
Внуѕ	Hysteresis		2.0	4.0	6.0	mT
Во	Magnetic offset	Bo=(Bop+Brp)/2	-2.0	0	+2.0	mT

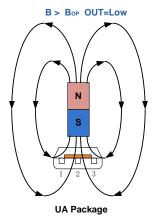

1mT=10Gs

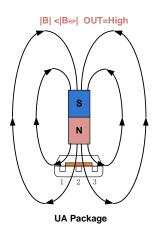

Magnetic flux density, B, is indicated as a negative value for North-polarity magnetic fields, and as a positive value for South-polarity magnetic fields.



TYPICAL CHARACTERISTIC

FUNCTION DESCRIPTION

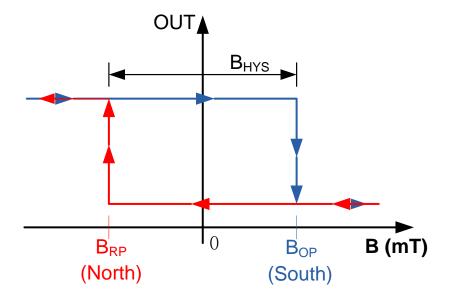

The SC2912 device is a chopper-stabilized Hall sensor with a digital latched output for magnetic sensing applications. The device can be powered with a supply voltage between 4.0 and 200V.In addition, the device can withstand voltages up to 500V for transient durations.

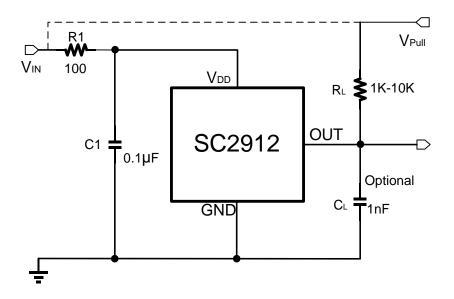

The output of SC2912 switches low (turns on) when a magnetic field (South polarity) perpendicular to the Hall element exceeds the operate point threshold, Bop. After turn-on, the output is capable of sinking 10mA and the output voltage is VQ (sat). When the magnetic field is reduced below the release point, BRP, the device output goes high (turns off). The difference in the magnetic operate and release points is the hysteresis, BHYS, of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

An external output pull-up resistor is required on the OUT terminal. The OUT terminal can be pulled up to V_{DD} or to a different voltage supply. This allows for easier interfacing with controller circuits.

Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.



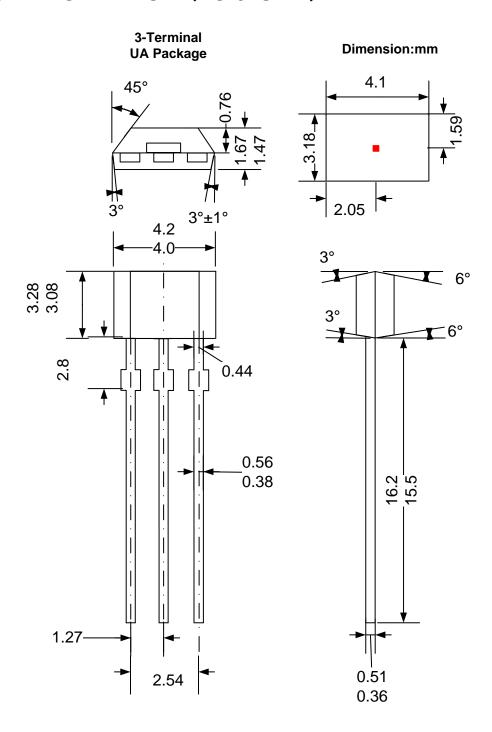

Transfer Function

Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

TYPICAL APPLICATION

The SC2912 contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. It is recommended to shunt C1 capacitors to the ground near the chip V_{DD} power supply, with a typical value of 0. 1µF.At the same time in the external optional series resistor R1 their typical values for 100 Ω . The output capacitor C_L is used as the output filter, typically 1nF.

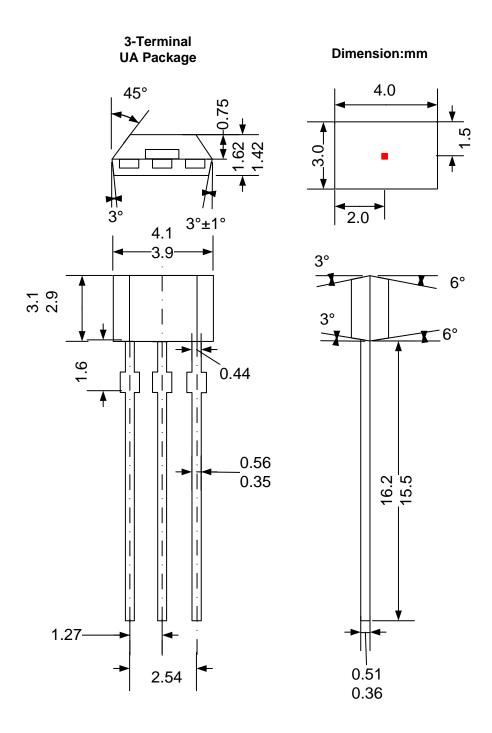
Select a value for C_L based on the system bandwidth specifications as:


$$C_L = \frac{1}{2\pi \times R \times f (Hz)}$$

The output stage of the SC2912 device is a drain open-circuit NMOS tube, which provides a load capacity of 10mA. Adjust the pull-up resistor R_L to make it work properly. The R_L provides a high level for the leak-opening output. In general, less current is better, but faster transient response and bandwidth are required, with a smaller resistor R_L for faster switching.

V_{PULL} is not restricted to V_{DD}, and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.

PACKAGE INFORMATION (TO-92S-A2)


Notes:

- Exact body and lead configuration at vendor's option within limits shown.
- Height does not include mold gate flash. 2.

Where no tolerance is specified, dimension is nominal.

PACKAGE INFORMATION (TO-92S-B2)

Notes:

- Exact body and lead configuration at vendor's option within limits shown. Height does not include mold gate flash.
- 2.

Where no tolerance is specified, dimension is nominal.

REVISON HISTORY

Revision	Date	Description
Rev0.1	2016-08-14	Preliminary datasheet
Rev2.3	2018-05-27	The final revision of old datasheet
RevA1.0	2020-12-04	Unified datasheet format