

High precision, wide band, programmable linear Hall sensor IC

FEATURES

- High-speed programmable liner Hall effect sensor IC
 - Quiescent output voltage
 - Sensitivity at (0.6—14 mV/Gs)
 - Temperature coefficient of Sensitivity
- Response time could reach 3.7µs
- Bandwidth up to 120 kHz
- Low noise
- Supply voltage from 4.5V to 5.5V
- Operating temperature from -40°C

to 150°C

- Under-voltage lockout and Short circuit diagnostic capability
- Lead free SIP4 package

APPLICATIONS

- BLDC motor current monitoring
- Over-current detection
- AC/DC converters
- Position sensors

DESCRIPTION

SC4643 is a programmable liner Hall-effect sensor IC, integrated with one magnetic sensor module, a three-level variable low-noise amplifier, output pin and temperature detection, quiescent output compensation, sensitivity compensation, and EEPROM. The sensor reacts to the magnetic field which is perpendicular to the chip, and convert to output voltage according to sensitivity. Which is very suitable to current monitor.

SC4643 have a quiescent output voltage default as half of the supply voltage. And the quiescent voltage can be programmed through supply voltage and output-pin. The sensitivity range of the chip can be shifted from 0.6mV/Gs to 14mV/Gs in order to adapt the current flow of various ranges.

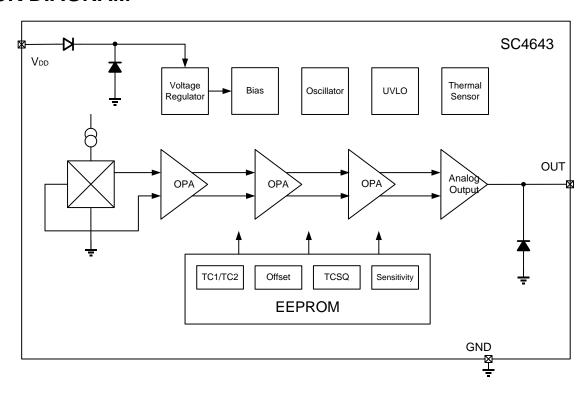
SC4643 is integrated with temperature sensor module. User can compensate the sensitivity of the chip through programmable algorithm, together with the temperature coefficient of the magnetic ring could enhance accuracy.

The typical supply-voltage of the IC is 5.0V, limited voltage is 15V, operating temperature

is -40° to 150°, capable of maintaining

stable operation in the harsh automotive environment.

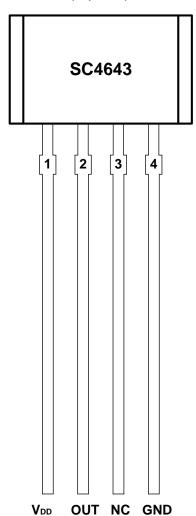
The SC4643 sensor IC is available in a 4-pin SIP The package is lead (Pb) free, with 100% matte tin plating.


CONTENTS

FEATURES1 -
APPLICATIONS1 -
DESCRIPTION1 -
BLOCK DIAGRAM 3 -
ORDERING INFORMATION3 -
THERMAL CONFIGURATION 4 -
ABSOLUTE MAXIMUM RATINGS 5 -
ESD PROTECTION 5 -
OPERATING CHARACTERISTICS 6 -

OPERATING CHARACTERISTICS(CONTI	NUED) 7 -
OPERATING CHARACTERISTICS(CONTIL	NUED) 8 -
FUNCTIONAL DESCRIPTION	9 -
TYPICAL APPLICATION	10 -
TRANSFER FUNCTION	10 -
PACKAGE INFORMATION (VB)	11 -
REVISION HISTORY	- 12 -

BLOCK DIAGRAM


ORDERING INFORMATION

Part Number	Packing	Mounting	Ambient, T _A	Marking
SC4643VB	Bulk,500pcs/bag	4-pin SIP	-40°C to 150°C	4643

THERMAL CONFIGURATION

Ter	minal	Type	Description	
Name	Number	Type	Description	
V _{DD}	1	PWR	4.5V ~ 5.5V power supply	
OUT	2	Output	Output terminal	
NC	3		Connect to Ground	
GND	4	Ground	Ground terminal	

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Min.	Max.	Unit
Forward Supply Voltage	$V_{ extsf{DD}}$		0	15	V
Reverse Supply Voltage	Vrcc		-15	0	V
Forward Output Voltage	Vouт		0	15	V
Reverse Output Voltage	Vrout		-0.5	0	V
Output Source Current	OUT(source)	Vout to GND	0	3	mA
Output Sink Current	OUT(sink)	VDD to VOUT	0	10	mA
EEPROM Write Cycles				100	cycle
Operating Ambient Temperature	Та		-40	150	°C
Storage Temperature	Тѕтс		-55	160	°C

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD PROTECTION

Human Body Model (HBM) tests according to: standard AEC-Q100-002

Characteristic	Symbol	Min.	Max.	Unit
HBM ESD stress voltage	Vesd	-4000	4000	V

OPERATING CHARACTERISTICS

Valid through the full operating temperature range, VDD+= 5V, as not otherwise specified in conditions

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Electrical Characteristics						
Supply Voltage	V_{DD}		4.5	5	5.5	V
Supply Current	l _{DD}		~	13	16.5	mA
Power-Up Time	t PO	C _{BYPASS} =Open,C _L =1nF, Sens= 2mV/G, B=400G	~	78	~	μS
Undervoltage	Vuvloh	V _{DD} rising	~	4	~	V
Protection	Vuvlol	V _{DD} falling	~	3.6	~	V
Power-Up Reset	Vporh	V _{DD} rising	~	2.6	~	V
Voltage	Vporl	V _{DD} falling	~	2.3	~	V
Zener Diode Breakdown Voltage	Vz	I _{DD} = 30mA	15	~	~	V
Bandwidth	BWi	signal -3dB C∟=1nF	~	120	~	kHz
Chopper frequency	f c			500		kHz
Output Characterist	ics					
Response Time	t response	B _{step} =400G, C _L =1nF, Sens=2 mV/G	3	3.7	?	μS
Noise	VN	C∟=1nF, Sens=2 mV/G,	~	10	?	mV_{p-p}
	VIN	Bwf=BWi	~	1	?	mV_{RMS}
Up-raising Time	t R	B _{step} =400G, C _L =1nF, Sens=2 mV/G	~	3.6	?	μS
Output Clamp	$V_{\text{CLP(H)}}$	R _{L(DOWN)} =10K to GND	4.5	4.7	4.85	V
Voltage	$V_{\text{CLP(L)}}$	R _{L(UP)} =10K to VDD	0.15	0.3	0.45	V
Output Saturate	V _{SAT(H)}	RL(DOWN)=10K to GND	4.7	~	?	V
Voltage	V _{SAT(L)}	R _{L(UP)} =10K to VDD	~	~	0.3	V
Output Load	R _{L(UP)}	Vout $to V$ dd	4.7	~	?	$\mathbf{k}\Omega$
Resistance	R _{L(DOWN)}	Vout to GND	4.7	~	~	$\mathbf{k}\Omega$
Output Load Capacitor	CL	Sens=2 mV/G, C∟=1nF	~	1	10	nF
Output Slew Rate	SR	Sens=2 mV/G, CL=1nF	~	400	~	V/ms

OPERATING CHARACTERISTICS(Continued)

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Quiescent Output	Voltage Vουτ(Q)				•	
Factory						
Quiescent Output	$V_{OUT(Q)init}$		2.4	2.5	2.6	V
Voltage						
Quiescent Output						
Voltage Program	$V_{OUT(Q)PR}$		2.2		2.8	V
Range						
Program Digit	QVO		~	9	~	bit
Program	Stepvout(Q)		1.2	2	2.8	mV
Minimum Step	Stepvoor(Q)		1.2		2.0	IIIV
Sensitivity			_			
		SENS_coarse=00	~	1	~	mV/Gs
Factory Default	SENSINIT	SENS_coarse =01	~	2	~	mV/Gs
Sensitivity	SENSINIT	SENS_coarse =10	~	4.5	~	mV/Gs
		SENS_coarse =11	~	10	~	mV/Gs
		SENS_coarse =00	0.6	~	1.6	mV/Gs
Sensitivity	SENSPR	SENS_coarse =01	1.0	~	3.0	mV/Gs
Program Range		SENS_coarse =10	2.0	~	7.0	mV/Gs
		SENS_coarse =11	4.5	~	14	mV/Gs
Coarse Tuning	SENS_coarse			2		bit
Digit	SEINS_COARSE		~		~	DIL
Fine Tuning Digit	SENS_FINE		~	9	~	bit
Sensitivity Temper	rature Excursion					
Sensitivity		T _A =150°C to -40°C,				
Temperature	TCsens	calculated relative to		0	_	%/°C
Excursion	I OSLINS	25°C				70/ 0
Coefficient						
Sensitivity		T _A =25°C to 150 °C	-2.5	~	2.5	%
Temperature	∆Sens τc	T _A =-40°C to 25 °C	-2.5	~	2.5	%
Excursion Range		11/10/01/02/0				,,,
Sensitivity						
Temperature						
Excursion First			~	6	~	bit
Derivatives						
Compensation						
Digit						

OPERATING CHARACTERISTICS(Continued)

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Average Temperature						
Excursion	Stepsenstc		~	<0.3	~	%
programming step						
Quiescent Voltage Ter	mperature Ex	cursion				
Quiescent Output		$T_A=150^{\circ}C$ to $-40^{\circ}C$,				
Voltage Temperature	TCqvo	calculated relative to	~	0	~	mV/°C
Excursion		25 °C				
Quiescent Output	$\Delta V_{OUT(Q)TC}$	T _A =25°C to 150 °C	-10	~	10	mV
Voltage Range	Δ V ΟυΤ(Q)ΤC	T _A =-40°C to 25 °C	-10	?	10	mV
Temperature						
Excursion Program				30		bit
Digit						
Average Temperature	Step qvotc		~	1.2	~	mV
Programming Step	Stepavoic		~	1.2	~	IIIV
Lock Bit Programming	9					
EEPROM Lock Bit	EELOCK		~	1	?	bit
Other Coefficient						
Linearity	Linerr		-1	±0.2	1	%
Symmetry	Symerr		-1	±0.2	1	%
Quiescent Output		Through ounnly				
Voltage Range	Raterrvo	Through supply	-1	0	1	%
Variation Rate		voltage range				
Sensitivity Variation	Raterrsens	Through supply	-1.5	±0.5	1.5	%
Rate	ral ERRSens	voltage range	-1.5	±0.5	1.5	70
Packaging Influence	Δ Sens _{PKG}	after temperature	-1.25	0	1.25	%
to Sensitivity	A OCHOPKG	cycling	-1.20	U	1.25	/0

FUNCTIONAL DESCRIPTION

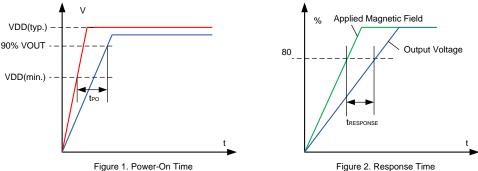
Quiescent Output Voltage (Vout(Q))

Quiescent Output Voltage indicate the output voltage of the IC when there is no magnetic field. Theoretically the output voltage of SC4643 equals to V_{DD}/2, but interfered by the offset voltage, sensitivity, packaging stress and other factors, the Quiescent output Voltage does have some deviation from the Theoretic figure. During factory, the actual Quiescent Voltage can be modified to the theoretic figure ±5mV. Quiescent output Voltage is influenced by temperature coefficient to a extent, which referred in statistics is with the variation of the temperature, the Quiescent Output Voltage also changes (the higher the sensitivity is the more evident it will be) SC4643 is integrated with temperature sensors that could modify the temperature coefficient of the Quiescent Output Voltage.

Sensitivity

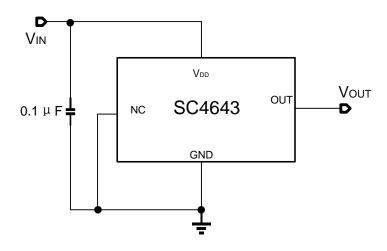
When the south pole magnetic field perpendicular to the chip tagged side accurate, the output voltage increase proportionately, until it reaches supply voltage. On the contrary, when the north pole magnetic field perpendicular to the chip tagged side accurate, the output voltage decrease proportionately, until it reaches ground level. Sensitivity is defined as the specific value of the variation of Output voltage and variation of the magnetic field, common unit is mV/Gs or mV/mT

Sens =
$$[V_{OUT (B1)} - V_{OUT (B2)}] / (B1 - B2)$$

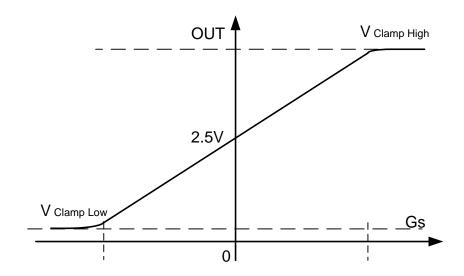

The value of the sensitivity can be programmed according to the customers demand, which ranges from 0.5 to 24mV/Gs. Through the same procedure, the Sensitivity Temperature Excursion can also be programmed, in order to compensate the temperature coefficient of the magnetic ring or the chip itself.

Power-Up Time (tpo)

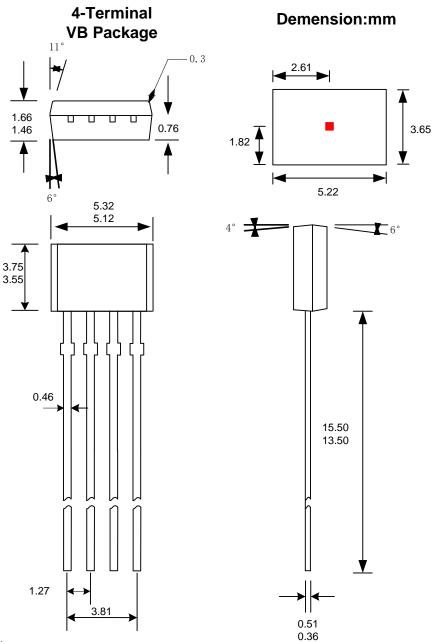
Power-Up time is defined as: At the specific magnetic field, the difference of the time spend between the time spend for Supply Voltage reaches 4.5V and Output voltage reaches 90% of the target value.


Response Time (tresponse)

Response time is defined as the difference of the time between the spend of the magnetic field reaches 80% of the target value and the output voltage of the chip to reach 80% of the target value. The Response time is related with the sensitivity of the IC and the size of the Output load capacitance.



TYPICAL APPLICATION



TRANSFER FUNCTION

PACKAGE INFORMATION (VB)

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

REVISION HISTORY

Revision	Date	Description
Rev1.0	2018-06-15	Preliminary Datasheet
Rev2.0	2019-05-06	Perfect FEATURES
Rev2.3	2019-04-06	The final revision of old datasheet
RevA/1.0	2020-11-19	Unified datasheet format