

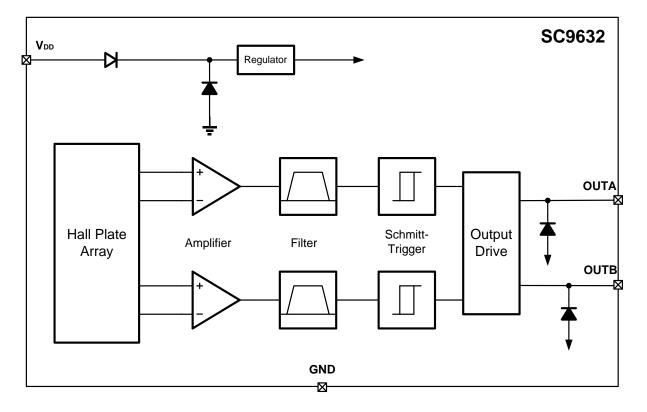
High Sensitivity Speed Sensor IC with Dual Quadrature Outputs

FEATURES

- Two independent digital quadrature A/B outputs
- Large air gap
- South and North pole pre-induction possible
- Low start-up voltage: 3.8V (Typ.)
- Reduced power consumption: 6.5mA (Typ.)
- Accurate true zero-crossing switch-point
- -40°C-150°C operating temperature range
- Over-voltage protection in all PIN
- Reverse-current protection in VDD PIN
- Output protection against electrical disturbances

SC9632 is a differential Hall Effect sensor IC with two independent channels providing quadrature outputs. The device provides a high sensitivity and a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. The integrated circuit is response to changing differential magnetic fields created by rotating ring magnets and by ferrous targets when coupled with a magnet. By use of the A/B quadrature outputs, the device is particularly suitable for speed and direction of magnetic ring or ferromagnetic toothed wheels.

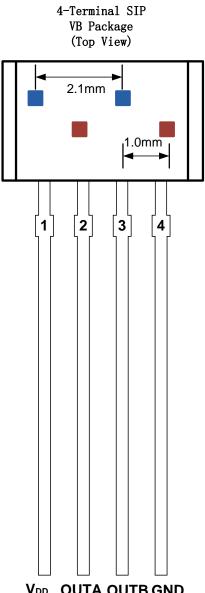
The device is packaged in a 4-pin plastic SIP. It is lead (Pb) free, with 100% matte tin plated lead frame.


CONTENTS

FEATURES	1 -
DESCRIPTION	1-
BLOCK DIAGRAM	3 -
ORDERING INFORMATION	3 -
TERMINAL CONFIGURATION	4 -
ABSOLUTE MAXIMUM RATINGS	5 -
ESD PROTECTION	5 -
Thermal Characteristics	5 -
OPERATING CHARACTERISTICS	6 -
Electrical parameters	6 -

Magnetic Characteristics	7 -
TYPICAL CHARACTERISTICS	8 -
FUNCTIONAL DESCRIPTION	9 -
Power Derating Description	10 -
Gear Tooth Sensing	11 -
TYPICAL APPLICATION	12 -
PACKAGE INFORMATION	13 -
REVISON HISTORY	14 -

BLOCK DIAGRAM



ORDERING INFORMATION

Part Number	Packing	Mounting	Ambient, T _A	Marking
SC9632VB	Bulk, 500 pieces/bag	4-pin SIP	-40℃ to 150℃	9632

TERMINAL CONFIGURATION

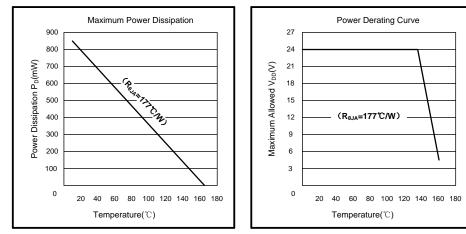
VDD OUTA OUTB GND

Ter	minal	Turne	Description	
Name	Number	Туре	Description	
Vdd	1	PWR	3.8V ~ 24 V power supply	
OUTA	2	Output	tput Open-drain output required a pull-up resistor	
OUTB	3	Output	Open-drain output required a pull-up resistor	
GND	4	Ground	Ground	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Limit V	Units	
Falameter	Symbol	Min.	Max.	Units
Power supply voltage	Vdd	-30	30	V
Output terminal voltage	Vout	-0.5	30	V
Output terminal current sink	Isink	0	40	mA
Operating junction temperature	TJ	-40	165	°C
Storage temperature	Тѕтс	-65	175	°C

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ESD PROTECTION

Human Body Model (HBM) tests according to: standard AEC-Q100-002、AEC-Q100-003

Parameter	Symbol	Limit V	Units		
Farameter	Symbol	Min.	Max.	Units	
HBM mode ESD stress	Vesd	-4.0	4.0	kV	
MM mode ESD stress	Vesd	-300	300	V	

Thermal Characteristics

Symbol	Parameter	Test Conditions	Rating	Units
$R_{ heta}$ JA	Package thermal resistance	Single-layer PCB, with copper limited to solder pads	177	°C/W

OPERATING CHARACTERISTICS

Electrical parameters

over operating free-air temperature range (V_{DD}=5V, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Vdd	Operating voltage	TJ <tj (max)<="" td=""><td>3.8</td><td></td><td>24</td><td>V</td></tj>	3.8		24	V
ldd	Operating supply current	VDD=3.8V to 24 V	4.5	6.5	8.5	mA
V _{Qsat}	Output saturation voltage	l 噑=20mA, T ₄ =25 ℃		150	400	mV
IQL	Output leakage current	$V_{DD} < 24V$			10	μA
Vdz	Overvoltage protection at VDD terminal	IDD = 10mA	30	35	40	V
Voz	Overvoltage protection at OUT terminal	Va= High Ia = 1mA	30	35	40	V
OCP ¹	Over current protection at OUT terminal	T _A =25℃	40			mA
t _{po} 2	Power-on time	VDD>3.8V		3.8	9	mS
tsettle ³	Settling time	V _{DD} >3.8V, f=1kHz	0		50	mS
tresponse ⁴	Response time	Vpp>3.8V, f=1kHz	3.8		59	mS
tr ⁵	Output rise time	R1=1Kohm Ca=20pF		0.4	1.0	μS
tr	Output fall time	R1=1Kohm Ca=20pF		0.35	1.0	μS
f _{cu}	Upper corner frequency	-3dB, single pole		20	-	kHz
fcl	Lower corner frequency	-3dB, single pole		10		Hz

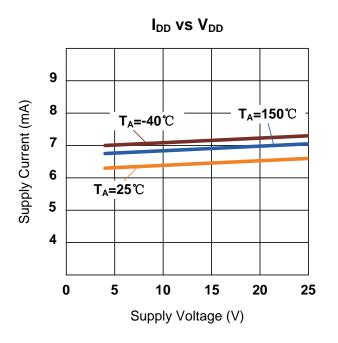
 1 Io does not change state when Io=OCP.

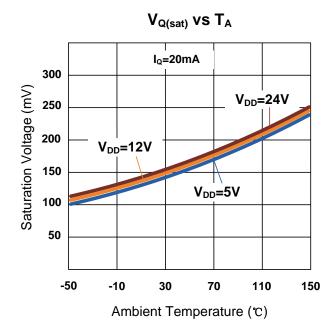
²Time required to initialize device.

³Time required for the output switch points to be within specification.

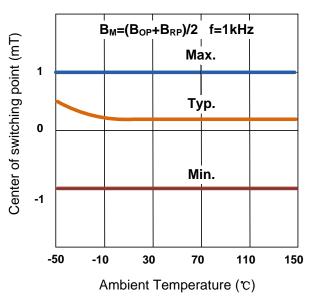
⁴ Equal to tpo + tsettle.

⁵Output Rise Time will be dominated by the RC time constant.

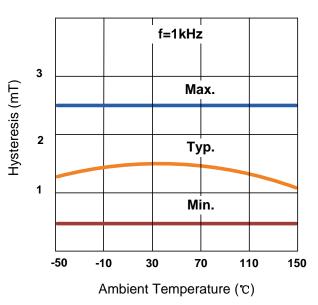



Magnetic Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BBack	Pre-induction		-500		500	тm
$\triangle B_{OP1}$	Operated point of channel1	f=1kHz,Bdiff=5mT			0	тm
$\triangle B_{RP1}$	Released point of channel1	f=1kHz,Bdiff=5mT	0			тm
BHYS1	Hysteresis of channel1		0.5	1.5	2.5	mT
∆Вм1	Center of switching point of channel1	(Bop + Brp)/2	-2.0	0	+2.0	mT
$\triangle B_{OP2}$	Operated point of channel2 f=1kHz,Bdiff=5				0	тm
$\triangle B_{RP2}$	Released point of channel2	f=1kHz,Bdiff=5mT	0			тm
BHYS2	Hysteresis of channel2		0.5	1.5	2.5	mT
∆Вм₂	Center of switching point of channel1	(Bop + Brp)/2	-2.0	0	+2.0	mT



TYPICAL CHARACTERISTICS



$\triangle B_{M1/2}$ vs T_A

V_{HYS1/2} vs T_A

FUNCTIONAL DESCRIPTION

The SC9632 integrates two independent differential Hall-effect sensor IC. The Hall IC supports four Hall elements, with magnet back-biased, which sense the magnetic profile of the ferrous gear target simultaneously, but at different points, generating two differential internal analog voltages, that is processed for precise switching of the digital output signals.

For each of two independent channels, the device detects the motion and position of ferromagnetic or permanent magnet structures by measuring the differential flux density of the magnetic field. Changes in field strength at the device face, which are induced by a moving target, are sensed by the two integrated Hall transducers. The transducers generate signals that are differentially amplified by on-chip electronics. This differential design provides immunity to radial vibration within the operating air gap range of the SC9632, by rejection of the common mode signal. Steady-state magnet and system offsets are eliminated using an on-chip differential band-pass filter. This filter also provides relative immunity to interference from electromagnetic sources.

The Hall IC is self-calibrating with a temperature compensated amplifier and offset cancellation circuitry. Its internal voltage regulator provides supply noise rejection throughout the operating voltage range. Changes in temperature do not greatly affect this device due to the stable amplifier design and the offset rejection circuitry. The Hall transducers and signal processing electronics are integrated on the same silicon substrate, using a proprietary BiCMOS process.

The SC9632 is offered in a lead (Pb) free 4-pin SIP package with a 100% matter tin plated lead frame.

Power Derating Description

The device must be operated below the maximum junction temperature of the device, $T_{J(max.)}$.Under certain combinations of peak condition, reliable operation may require derating supplied power or improving the heat dissipation properties of the application.

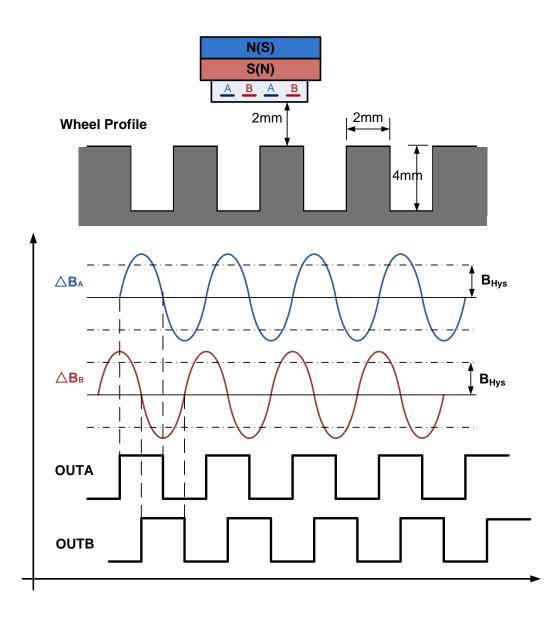
The package Thermal Resistance, $R_{\bullet JA}$ is figure of merit summarizing the ability of the application and device to dissipate heat from the junction, through all paths to the ambient air. Its primary component is an Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $R_{\bullet JC}$, is relatively small component of $R_{\bullet JA}$. Ambient air temperature, T_A , and air motion are significant external factors, damped by over-molding.

The effect of varying power levels (*Power Dissipation*, P_D), can be estimated. The following formulas represent the fundamental relationships used to estimate T_J , at P_D .

$$P_{D}=V_{DD} \times I_{DD} \qquad (1)$$
$$\triangle T=P_{D} \times R_{\theta} J_{A} \qquad (2)$$
$$T_{J}=T_{A} + \triangle T \qquad (3)$$

For example *T*_A=25 °C, *V*_{DD}=5*V*, *I*_{DD}=6.5*m*A, *R*₉ _{JA} =177 °C/W.

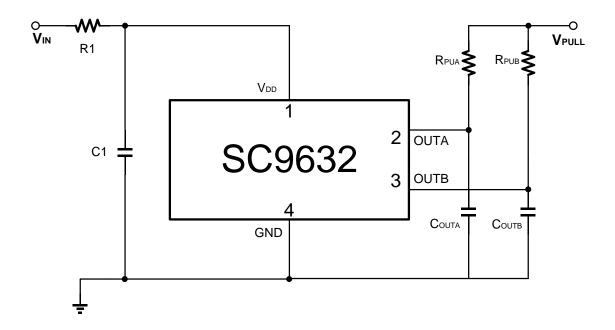
 $P_D = V_{DD} \times I_{DD} = 5V \times 6.5mA = 32.5mW$ $\triangle T = P_D \times R_{\oplus JA} = 32.5mW \times 177 \ C/W = 5.8 \ C$ $T_J = T_A + \triangle T = 25 \ C + 5.8 \ C = 30.8 \ C$



Gear Tooth Sensing

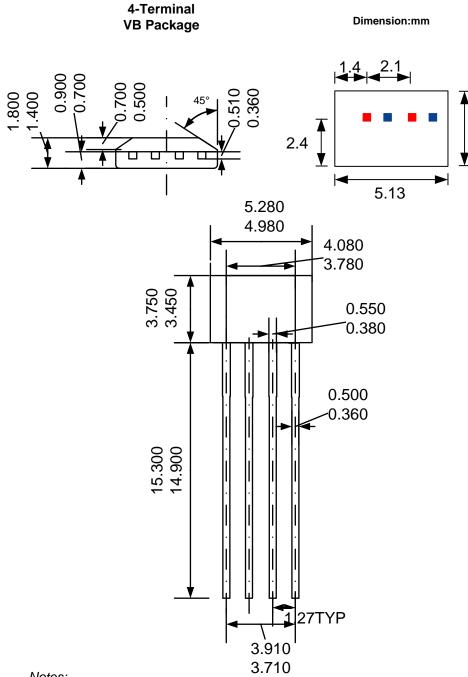
In the case of ferromagnetic toothed wheel application, the IC has to be biased by the South or North pole of a permanent magnet which should cover both Hall probes

The maximum air gap depends on:


- the magnetic field strength (magnet used; pre-induction), and
- the toothed wheel that is used (dimensions, material, etc.)

TYPICAL APPLICATION

The SC9632 contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally, EMI/RFI protection may still be required.



Component	Value	Units
Rpua/Rpub	2	kΩ
R1	100	Ω
C1	100	nF
Couta/Coutb	1	nF

1. R1, C1 is for improved EMC performance

PACKAGE INFORMATION

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- Height does not include mold gate flash. 2.

Where no tolerance is specified, dimension is nominal.

REVISON HISTORY

Revision	Date	Description
Rev0.1	2017-09-09	Preliminary datasheet
Rev2.3	2018-08-19	The final revision of old datasheet
RevA/1.0	2020-12-15	Unified datasheet format