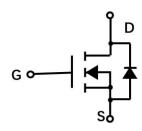

#### **Features**


- 100V, 4.9A
- $R_{DS(ON)} = 130 \text{m}\Omega \text{ (Max.)} @ V_{GS} = 10 \text{V, } I_D = 3 \text{A}$
- High Power and Current Handing Capability
- Lead Free Product is Acquired
- Surface Mount Package

## **Application**

- PWM Application
- Load Switch
- Power Management

## **Package**





## **Absolute Maximum Ratings** Tc=25℃ unless otherwise specified

| Symbol                            | Parameter                                       |            | Max.        | Units      |
|-----------------------------------|-------------------------------------------------|------------|-------------|------------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                            |            | 100         | V          |
| V <sub>GSS</sub>                  | Gate-Source Voltage                             |            | ± 20        | V          |
| ID                                | Continuous Drain Current note5                  | Tc = 25°C  | 4.9         | А          |
| ID                                | Continuous Drain Current note5                  | Tc = 100°C | 3.1         | Α          |
| I <sub>DM</sub>                   | Pulsed Drain Current note3                      |            | 19.6        | Α          |
| P <sub>D</sub>                    | Power Dissipation note2                         | Tc = 25°C  | 17          | W          |
| I <sub>AS</sub>                   | Avalanche Current note3,6                       | 3.5        | А           |            |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy note3,6           |            | 3.2         | mJ         |
| Rejc                              | Thermal Resistance, Junction to Case            |            | 7.2         | °C/W       |
| $R_{\theta JA}$                   | Thermal Resistance, Junction to Ambient note1,4 |            | 62.5        | °C/W       |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range         |            | -55 to +150 | $^{\circ}$ |



## Electrical Characteristics Tc=25°C unless otherwise specified

| Symbol              | Parameter                         | Test Condition                                                 | Min. | Тур. | Max. | Units |
|---------------------|-----------------------------------|----------------------------------------------------------------|------|------|------|-------|
| Off Charac          | teristic                          |                                                                |      |      |      |       |
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage    | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250µA                   | 100  | -    | -    | V     |
| I <sub>DSS</sub>    | Drain-Source Leakage Current      | V <sub>DS</sub> = 80V, V <sub>GS</sub> = 0V                    | -    | -    | 1    | μΑ    |
| Igss                | Gate to Body Leakage Current      | V <sub>DS</sub> = 0V, V <sub>GS</sub> = ±20V                   | -    | -    | ±100 | nA    |
| On Charac           | teristics                         |                                                                |      |      |      |       |
| V <sub>GS(th)</sub> | Gate Threshold Voltage            | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                           | 1.2  | 1.8  | 2.6  | V     |
| _                   | Static Drain-Source On-Resistance | V <sub>GS</sub> = 10V, I <sub>D</sub> =3A                      | -    | 105  | 130  | mΩ    |
| R <sub>DS(on)</sub> |                                   | V <sub>GS</sub> = 4.5V, I <sub>D</sub> = 2A                    | -    | 135  | 150  | mΩ    |
| Dynamic C           | haracteristics                    |                                                                |      |      |      |       |
| C <sub>iss</sub>    | Input Capacitance                 |                                                                | -    | 212  | -    | pF    |
| Coss                | Output Capacitance                | $V_{DS} = 50V, V_{GS} = 0V,$                                   | -    | 27.5 | -    | pF    |
| Crss                | Reverse Transfer Capacitance      | f = 1.0MHz                                                     | -    | 1.6  | -    | pF    |
| Switching           | Characteristics                   |                                                                |      |      |      |       |
| Qg                  | Total Gate Charge                 | V 50V I 0A                                                     | -    | 3.3  | -    | nC    |
| Qgs                 | Gate-Source Charge                | $V_{DS} = 50V, I_{D} = 3A,$                                    | -    | 0.35 | -    |       |
| Q <sub>gd</sub>     | Gate-Drain("Miller") Charge       | V <sub>GS</sub> = 10V                                          | -    | 0.87 | -    |       |
| t <sub>d(on)</sub>  | Turn-On Delay Time                | ., 50,/, 0,4                                                   | -    | 13.2 | -    |       |
| tr                  | Turn-On Rise Time                 | $V_{DS} = 50V, I_{D} = 3A,$<br>$R_{G} = 2\Omega, V_{GS} = 10V$ | -    | 2.2  | -    | ns    |
| t <sub>d(off)</sub> | Turn-Off Delay Time               |                                                                | -    | 11   | -    |       |
| t <sub>f</sub>      | Turn-Off Fall Time                |                                                                | -    | 1.1  | -    |       |
| Diode Char          | racteristics                      |                                                                | •    |      | •    |       |
| Is                  | Continuous Source Current         |                                                                | -    | -    | 4.9  | Α     |
| VsD                 | Diode Forward Voltage             | I <sub>S</sub> =3A . V <sub>GS</sub> = 0V                      | -    | -    | 1.0  | V     |
| t <sub>rr</sub>     | Reverse Recovery Time             | I <sub>SD</sub> =3A,                                           | -    | 27   | -    | ns    |
| Qrr                 | Reverse Recovery Charge           | dl <sub>SD</sub> /dt=100A/µs                                   | -    | 35   | -    | nC    |

#### Notes:

- 1. The value of  $R_{\theta JC}$  is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- 2. The power dissipation  $P_D$  is based on  $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Single pulse width limited by junction temperature  $T_{\text{J(MAX)}}$ =150°C.
- 4. The  $R_{\text{BJA}}$  is the sum of the thermal impedance from junction to case  $R_{\text{BJC}}$  and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is  $V_{DS}$ =50V, $V_{GS}$ =10V,L=0.5mH

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

<u>www.winsemi.com</u> Tel: +86-755-8250 6288 Fax: +86-755-8250 6299 2/6



# **Typical Performance Characteristics**

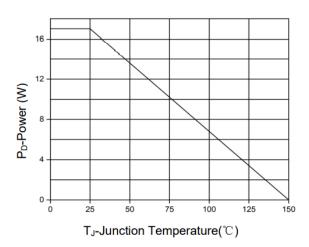



Figure 1. Power Dissipation

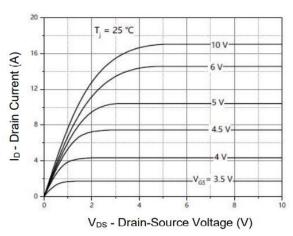



Figure 3. Output characteristics

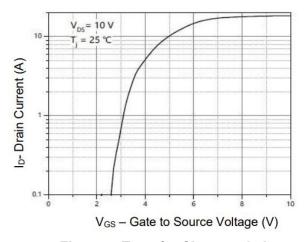



Figure 5. Transfer Characteristics

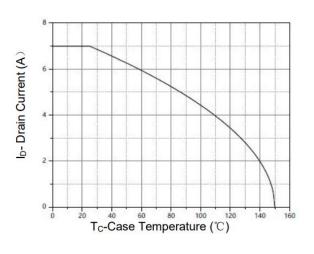



Figure 2. Drain Current

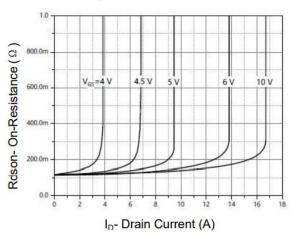
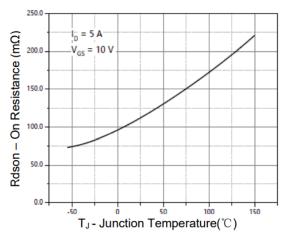
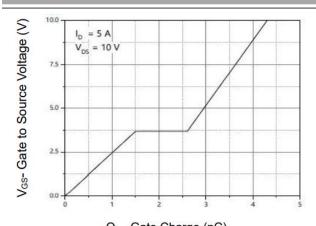
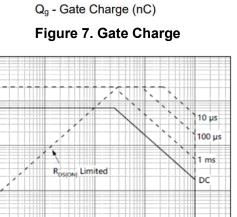


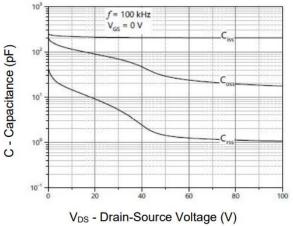

Figure 4. Drain-Source On-state resistance



Figure 6. Drain-Source On-State Resistance

## Silicon N-Channel MOSFET

Ip- Drain Current (A)








V<sub>DS</sub> – Drain to Source Voltage (V)

Figure 9. Safe Operation Area



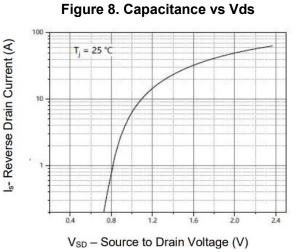



Figure 10. Source- Drain Diode Forward

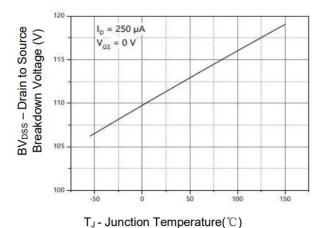
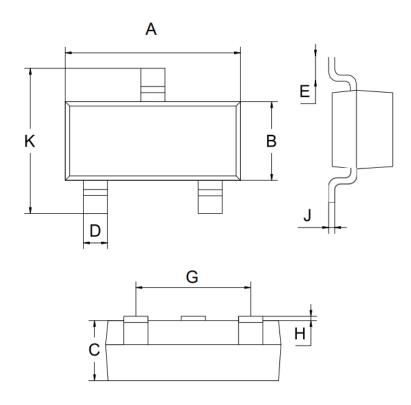




Figure 11. Drain-source breakdown voltage



# **SOT-23-3L Package Mechanical Data**



| SOT-23-3L            |       |       |       |  |  |  |  |
|----------------------|-------|-------|-------|--|--|--|--|
| Dim                  | MIN   | NOM   | MAX   |  |  |  |  |
| Α                    | 2.80  | 2.90  | 3.00  |  |  |  |  |
| В                    | 1.50  | 1.60  | 1.70  |  |  |  |  |
| С                    | 1.00  | 1.10  | 1.20  |  |  |  |  |
| D                    | 0.30  | 0.40  | 0.50  |  |  |  |  |
| E                    | 0.25  | 0.40  | 0.55  |  |  |  |  |
| G                    | 1.90  |       |       |  |  |  |  |
| Н                    | 0.00  | -     | 0.10  |  |  |  |  |
| J                    | 0.047 | 0.127 | 0.207 |  |  |  |  |
| К                    | 2.60  | 2.80  | 3.00  |  |  |  |  |
| All Dimensions in mm |       |       |       |  |  |  |  |

WINSEMI MICROELECTRONICS WINSEMI WINSEMI WINSEMI MICROELECTRONICS WINSEMI WINSEM

## SEZ9582AG Product Description

#### **Silicon N-Channel MOSFET**



#### NOTE:

- 1.We strongly recommend customers check carefully on the trademark when buying our product, if there is any question, please don't be hesitate to contact us.
- 2.Please do not exceed the absolute maximum ratings of the device when circuit designing.
- 3. Winsemi Microelectronics Co., Ltd reserved the right to make changes in this specification sheet and is subject to change without prior notice.

#### **CONTACT**:

WINSEMI Microelectronics Co., Ltd.

ADD:Room 1002, East, Phase 2, HighTech Plaza, Tian-An Cyber Park, Che gong miao, FuTian, Shenzhen,

P.R. China.

Post Code: 518040
Tel: +86-755-8250 6288
FAX: +86-755-8250 6299
Web Site: www.winsemi.com

WINSEMI MICROELECTRONICS WINSEMI WINSEMI