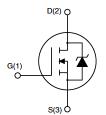


Features

- 650V, 5A
- $R_{DS(ON)} = 2.5\Omega$ (Max.) @ $V_{GS} = 10V$, $I_D = 2A$
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- RoHS and Halogen-Free Compliant

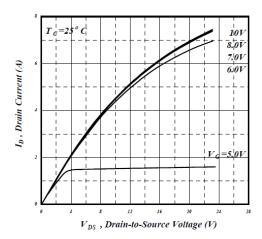

Application

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Power Factor Correction (PFC)

Package

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		650	V
V _{GSS}	Gate-Source Voltage		± 30	V
I _D	Continuous Drain Current note5	T _C = 25°C	5	Α
I _{DM}	Pulsed Drain Current note3		16	Α
P _D	Power Dissipation note2	T _C = 25°C	62.5	W
Eas	Single Pulse Avalanche Energy note3.6		173	mJ
Reuc	Thermal Resistance, Junction to Case		2	°C/W
RθJA	Thermal Resistance, Junction to Ambient note1,4		62.5	°C/W
TJ, TSTG	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$ C

Electrical Characteristics Tc=25°C unless otherwise specified


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charact	eristic					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	650	-	-	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} = 650V, V _{GS} = 0V	-	-	1	μΑ
Igss	Gate to Body Leakage Current	V _{DS} = 0V, V _{GS} = ±30V -		-	±100	nA
On Charact	eristics					
V _{GS(th)}	Gate Threshold Voltage	oltage $V_{DS} = V_{GS}$, $I_D = 250\mu A$		-	4	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 2A	-	-	2.5	Ω
Dynamic Ch	naracteristics		•	•	•	
C _{iss}	Input Capacitance	\/ 05\/\/ 0\/	-	560	-	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	-	55	-	pF
Crss	Reverse Transfer Capacitance	f = 1.0MHz	-	5	-	pF
Switching C	Characteristics		•	•		
Qg	Total Gate Charge	V 500V L 4A	-	13	-	nC
Qgs	Gate-Source Charge	V_{DS} = 520V, I_{D} = 4A,	-	4	-	
Q _{gd}	Gate-Drain("Miller") Charge	V _{GS} = 10V	-	2.2	-	
t _{d(on)}	Turn-On Delay Time	1001/1	-	7	-	
tr	Turn-On Rise Time	V _{DS} = 100V, I _D = 4A,	-	16	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 25\Omega$, $V_{GS}=10V$	-	36	-	
t _f	Turn-Off Fall Time		-	22	-	
Diode Char	acteristics		•			
V _{DS}	Diode Forward Voltage note3	I _S =4A . V _{GS} = 0V	-	-	1.4	V
t _{rr}	Reverse Recovery Time	I _{SD} =4A, V _{GS} = 0V	-	250	-	ns
Qrr	Reverse Recovery Charge	dl _{SD} /dt=100A/µs	-	4.5	-	nC

Notes:

- 1. The value of R_{BJC} is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- 2. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Single pulse width limited by junction temperature $T_{\text{J(MAX)}}$ =150°C.
- 4. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- 5. The maximum current rating is package limited.
- 6. The EAS data shows Max. rating. The test condition is V_{DS} =50V, V_{GS} =10V,L=30mH

Typical Performance Characteristics

Figure 1. Output Characteristics

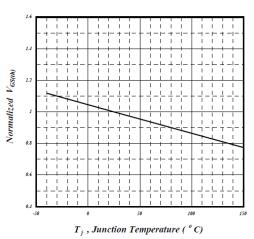


Figure 3. Normalized On Resistance vs Junction Temperature

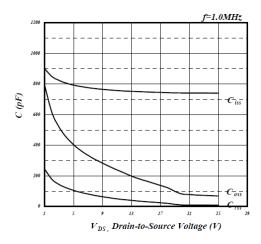


Figure 5. Capacitance Characteristics

Tel: +86-755-8250 6288

www.winsemi.com

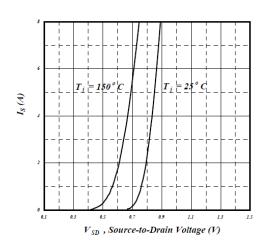


Figure 2. Body Diode Forward Voltage vs Source Current and Temperature

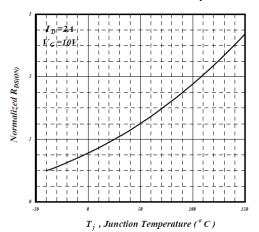


Figure 4. Normalized On Resistance vs Junction Temperature

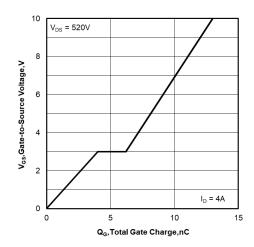


Figure 6. Gate Charge Characteristics

3/6

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

Fax: +86-755-8250 6299

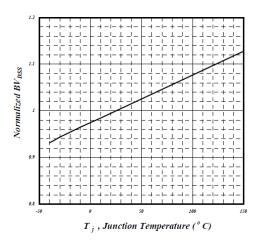


Figure 7. Normalized Breakdown Voltage vs Junction Temperature

Figure 8. Maximum Safe Operating Area

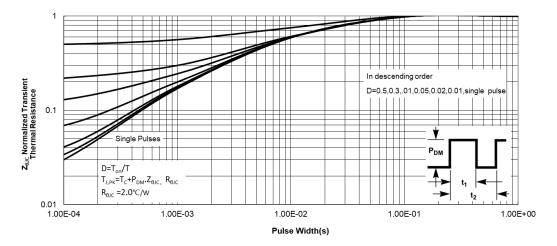
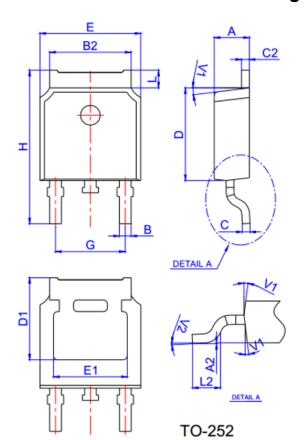



Figure 9. Maximum Effective Transient Thermal Impedance, Junction-to-Case

TO-252 Package Mechanical Data

	Dimensions						
Ref.	Millimeters			Inches			
11011	Min. Typ. Max.		Min. Typ. Max.				
		Typ.			Typ.		
Α	2.10		2.50	0.083		0.098	
A2	0		0.10	0		0.004	
В	0.66		0.86	0.026		0.034	
B2	5.18		5.48	0.202		0.216	
С	0.40		0.60	0.016		0.024	
C2	0.44		0.58	0.017		0.023	
D	5.90		6.30	0.232		0.248	
D1	5.30REF			0.209REF			
E	6.40		6.80	0.252		0.268	
E1	4.63			0.182			
G	4.47		4.67	0.176		0.184	
Н	9.50		10.70	0.374		0.421	
L	1.09		1.21	0.043		0.048	
L2	1.35		1.65	0.053		0.065	
V1		7°			7°		
V2	0°		6°	0°		6°	

WINSEMI MICROELECTRONICS WINSEMI WINSEMI

WFD5N65LMA Product Description

Silicon N-Channel MOSFET

NOTE:

- 1.We strongly recommend customers check carefully on the trademark when buying our product, if there is any question, please don't be hesitate to contact us.
- 2.Please do not exceed the absolute maximum ratings of the device when circuit designing.
- 3. Winsemi Microelectronics Co., Ltd reserved the right to make changes in this specification sheet and is subject to change without prior notice.

CONTACT:

WINSEMI Microelectronics Co., Ltd.

ADD:Room 1002, East, Phase 2, HighTech Plaza, Tian-An Cyber Park, Che gong miao, FuTian, Shenzhen,

P.R. China.

Post Code: 518040
Tel: +86-755-8250 6288
FAX: +86-755-8250 6299
Web Site: www.winsemi.com

WINSEMI MICROELECTRONICS WINSEMI WINSEMI