## WFD7N65LFS Product Description

Silicon N-Channel MOSFET

Г

# **WINSEMI**®

٦

1/6

| <ul> <li>Features</li> <li>650V, 7A</li> <li>R<sub>DS(ON)</sub> = 1.4Ω (Max.) @ V<sub>GS</sub> = 10V, I<sub>D</sub> = 3.5A</li> <li>Fast switching</li> <li>100% avalanche tested</li> <li>Improved dv/dt capability</li> <li>RoHS and Halogen-Free Compliant</li> </ul> | <ul> <li>Application</li> <li>Switch Mode Power Supply (SMPS)</li> <li>Uninterruptible Power Supply (UPS)</li> <li>Power Factor Correction (PFC)</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Package                                                                                                                                                                                                                                                                  |                                                                                                                                                             |

Т

# Absolute Maximum Ratings Tc=25°C unless otherwise specified

| Symbol           | Parameter                                       |                      | Max.        | Units |
|------------------|-------------------------------------------------|----------------------|-------------|-------|
| V <sub>DSS</sub> | Drain-Source Voltage                            | Drain-Source Voltage |             | V     |
| V <sub>GSS</sub> | Gate-Source Voltage                             |                      | ± 30        | V     |
| ID               | Continuous Drain Current note5                  | T <sub>C</sub> = 25℃ | 7           | Α     |
| IDM              | Pulsed Drain Current note3                      |                      | 28          | Α     |
| PD               | Power Dissipation note2                         | T <sub>C</sub> = 25℃ | 34.5        | W     |
| E <sub>AS</sub>  | Single Pulse Avalanche Energy note3.6           |                      | 432         | mJ    |
| Rejc             | Thermal Resistance, Junction to Case            |                      | 1.4         | °C/W  |
| Reja             | Thermal Resistance, Junction to Ambient note1,4 |                      | 62.5        | °C/W  |
| TJ, TSTG         | Operating and Storage Temperature Range         |                      | -55 to +150 | °C    |

### Silicon N-Channel MOSFET

# **WINSEMI**®

### Electrical Characteristics Tc=25 °C unless otherwise specified

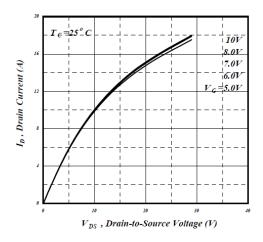
| Symbol              | Parameter                         | Test Condition                                                                              | Min. | Тур. | Max. | Units |
|---------------------|-----------------------------------|---------------------------------------------------------------------------------------------|------|------|------|-------|
| Off Charact         | eristic                           |                                                                                             | •    | •    |      |       |
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage    | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250µA                                                | 650  | -    | -    | V     |
| IDSS                | Drain-Source Leakage Current      | V <sub>DS</sub> = 650V, V <sub>GS</sub> = 0V                                                | -    | -    | 1    | μA    |
| lgss                | Gate to Body Leakage Current      | $V_{DS} = 0V, V_{GS} = \pm 30V$                                                             | -    | -    | ±100 | nA    |
| On Charact          | eristics                          | ·                                                                                           |      |      |      |       |
| V <sub>GS(th)</sub> | Gate Threshold Voltage            | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                          | 2    | -    | 4    | V     |
| R <sub>DS(on)</sub> | Static Drain-Source On-Resistance | V <sub>GS</sub> = 10V, I <sub>D</sub> = 3.5A                                                | -    | 1.2  | 1.4  | Ω     |
| R <sub>g</sub>      | Gate Resistance                   | f = 1.0MHz                                                                                  | -    | 1.37 | -    | Ω     |
| Dynamic Ch          | naracteristics                    |                                                                                             |      |      |      |       |
| Ciss                | Input Capacitance                 |                                                                                             | -    | 1038 | -    | pF    |
| Coss                | Output Capacitance                | $V_{DS} = 25V, V_{GS} = 0V,$                                                                | -    | 106  | -    | pF    |
| Crss                | Reverse Transfer Capacitance      | f = 1.0MHz                                                                                  | -    | 15.3 | -    | pF    |
| Switching C         | Characteristics                   |                                                                                             |      |      |      |       |
| Qg                  | Total Gate Charge                 | N 500)/ L 404                                                                               | -    | 32   | -    | nC    |
| Q <sub>gs</sub>     | Gate-Source Charge                | $V_{DS}$ = 520V, $I_{D}$ = 10A,                                                             | -    | 6.5  | -    |       |
| Q <sub>gd</sub>     | Gate-Drain("Miller") Charge       | V <sub>GS</sub> = 7V                                                                        | -    | 10.5 | -    |       |
| t <sub>d(on)</sub>  | Turn-On Delay Time                |                                                                                             | -    | 11   | -    |       |
| tr                  | Turn-On Rise Time                 | V <sub>DS</sub> = 310V, I <sub>D</sub> = 7A,<br>R <sub>G</sub> = 4.7Ω, V <sub>GS</sub> =10V | -    | 17   | -    | ns    |
| t <sub>d(off)</sub> | Turn-Off Delay Time               |                                                                                             | -    | 30   | -    |       |
| t <sub>f</sub>      | Turn-Off Fall Time                |                                                                                             | -    | 31   | -    |       |
| Diode Char          | acteristics                       |                                                                                             |      |      |      |       |
| Vsd                 | Diode Forward Voltage note3       | Is=7A . V <sub>GS</sub> = 0V                                                                | -    | -    | 1.4  | V     |
| t <sub>rr</sub>     | Reverse Recovery Time             | I <sub>SD</sub> =7A, V <sub>GS</sub> = 0V                                                   | -    | 411  | -    | ns    |
| Qrr                 | Reverse Recovery Charge           | dl <sub>sD</sub> /dt=100A/µs                                                                | -    | 2.7  | -    | nC    |

Notes:

1. The value of  $R_{\theta JC}$  is measured in a still air environment with TA =25°C and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

2. The power dissipation  $P_D$  is based on  $T_{J(MAX)}=150^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

3. Single pulse width limited by junction temperature  $T_{J(MAX)}$ =150°C.


4. The  $R_{\theta JA}$  is the sum of the thermal impedance from junction to case  $R_{\theta JC}$  and case to ambient.

5. The maximum current rating is package limited.

6. The EAS data shows Max. rating. The test condition is  $V_{DS}$ =100V, $V_{GS}$ =10V,L=10mH

### Silicon N-Channel MOSFET

# **Typical Performance Characteristics**





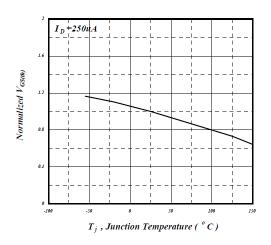



Figure 3. Normalized On Resistance vs Junction Temperature

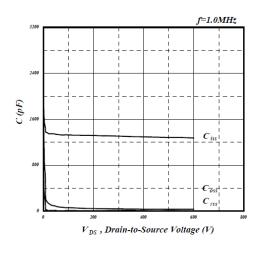



Figure 5. Capacitance Characteristics



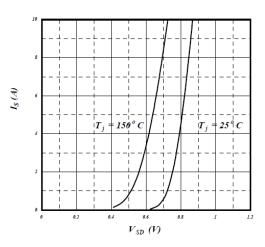



Figure 2. Body Diode Forward Voltage vs Source Current and Temperature

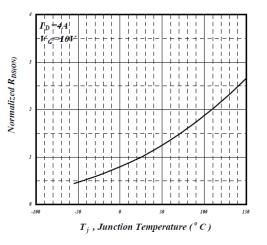
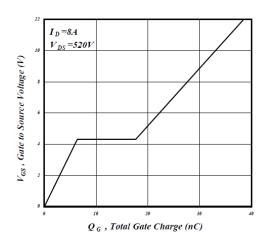




Figure 4. Normalized On Resistance vs Junction Temperature



## Figure 6. Gate Charge Characteristics

3/6

# 

# WFD7N65LFS Product Description

### Silicon N-Channel MOSFET

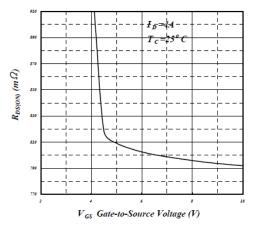



Figure 7. On-Resistance vs Gate Voltage

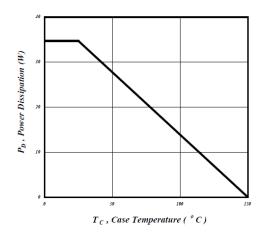
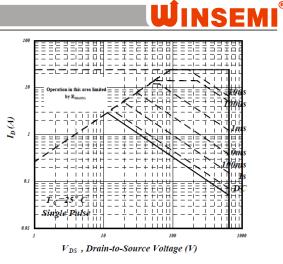
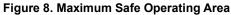
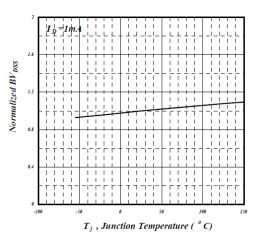






Figure 9. Total Power Dissipation







### Figure 10. Normalized Breakdown Voltage vs Junction Temperature

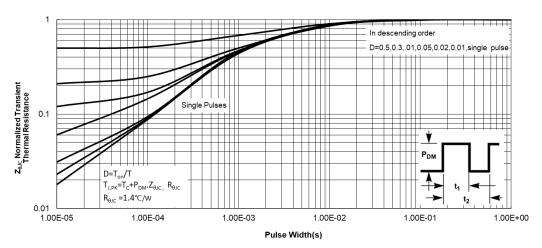
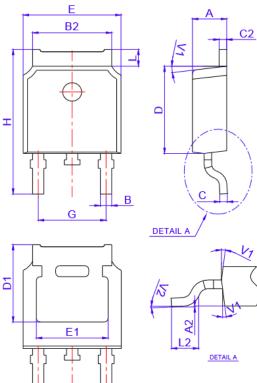




Figure 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

| WINSEMI MICROELECTRON | NICS WINSEMI MICROELECTRONIC | S WINSEMI MICROELECTRONICS | WINSEMI MICROELECTRONICS | WINSEMI MICROELECTRONICS |
|-----------------------|------------------------------|----------------------------|--------------------------|--------------------------|
| www.winsemi.com       | Tel : +86-755-8250 6288      | Fax : +86-755-8250 6299    |                          | 4/6                      |

# Silicon N-Channel MOSFET



|      |             |      | Dime     | ensions |      |       |
|------|-------------|------|----------|---------|------|-------|
| Ref. | Millimeters |      |          | Inches  |      |       |
|      | Min.        | Тур. | Max.     | Min.    | Тур. | Max.  |
| А    | 2.10        |      | 2.50     | 0.083   |      | 0.098 |
| A2   | 0           |      | 0.10     | 0       |      | 0.004 |
| В    | 0.66        |      | 0.86     | 0.026   |      | 0.034 |
| B2   | 5.18        |      | 5.48     | 0.202   |      | 0.216 |
| С    | 0.40        |      | 0.60     | 0.016   |      | 0.024 |
| C2   | 0.44        |      | 0.58     | 0.017   |      | 0.023 |
| D    | 5.90        |      | 6.30     | 0.232   |      | 0.248 |
| D1   | 5.30REF     |      | 0.209REF |         |      |       |
| E    | 6.40        |      | 6.80     | 0.252   |      | 0.268 |
| E1   | 4.63        |      |          | 0.182   |      |       |
| G    | 4.47        |      | 4.67     | 0.176   |      | 0.184 |
| Н    | 9.50        |      | 10.70    | 0.374   |      | 0.421 |
| L    | 1.09        |      | 1.21     | 0.043   |      | 0.048 |
| L2   | 1.35        |      | 1.65     | 0.053   |      | 0.065 |
| V1   |             | 7°   |          |         | 7°   |       |
| V2   | 0°          |      | 6°       | 0°      |      | 6°    |

**WINSEMI**®

TO-252

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel : +86-755-8250 6288 Fax: +86-755-8250 6299

## WFD7N65LFS Product Description

Silicon N-Channel MOSFET

### NOTE:

1.We strongly recommend customers check carefully on the trademark when buying our product, if there is any question, please don't be hesitate to contact us.

ŴINSEMI®

6/6

2.Please do not exceed the absolute maximum ratings of the device when circuit designing.

3. Winsemi Microelectronics Co., Ltd reserved the right to make changes in this specification sheet and is subject to change without prior notice.

#### CONTACT:

WINSEMI Microelectronics Co., Ltd.

ADD:Room 1002, East, Phase 2, HighTech Plaza, Tian-An Cyber Park, Che gong miao, FuTian, Shenzhen, P.R. China. Post Code : 518040 Tel: +86-755-8250 6288 FAX: +86-755-8250 6299 Web Site : www.winsemi.com