

General-Purpose High-Voltage Open-Drain Output Dual Comparator

FEATURES

- Supply Range: +3V to +36V
- Low Supply Current
 20µA (TYP) per channel at Vs = 5V
- Common-Mode Input Voltage Range Includes Ground
- Low Output Saturation Voltage
- Open-Drain Output for Maximum Flexibility
- SPECIFIED UP TO +125°C
- Micro SIZE PACKAGES: SOIC-8(SOP8)

APPLICATIONS

- Hysteresis Comparators
- Factory automation & control
- Industrial Equipment
- Test and Measurement
- Cordless power tool
- Vacuum robot
- Wireless Infrastructure

DESCRIPTION

The LM393 is the dual comparator version, and the outputs can be connected to other open-collector outputs to achieve wired-AND relationships. It can operate from 3V to 36V, and have low power consuming 20uA (TYP) per channel.

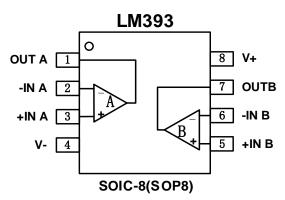
The LM393 consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Quiescent current is independent of the supply voltage. The device is the most cost-effective solutions for applications where low offset voltage, high supply voltage capability, low supply current, and space saving are the primary specifications in circuit design for portable consumer products.

The LM393 is available in Green SOIC-8 packages. It operates over an ambient temperature range of -40° C to $+125^{\circ}$ C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM393	SOIC-8(SOP8)	4.90mm×3.90mm

 For all available packages, see the orderable addendum at the end of the data sheet.



Revision History Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item	
A.0	2020.10	Preview version completed	
A.1	2021.2	Initial version completed	

Pin Configuration and Functions (Top View)

Pin Description

NAME	PIN SOIC-8(SOP8)	I/O ⁽¹⁾	DESCRIPTION
OUTA	1	0	Output, channel A
-INA	2	I	Inverting input, channel A
+INA	3	I	Noninverting input, channel A
V-	4	Р	Negative (lowest) power supply
+INB	5	I	Noninverting input, channel B
-INB	6	I	Inverting input, channel B
OUTB	7	0	Output, channel B
V+	8	Р	Positive (highest) power supply

(1)I=Input, O=Output, P=Power

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
	Supply, Vs=(V+) - (V-)		36	
Voltage	Input pin (IN+, IN-) ⁽²⁾	(V-)-0.3	(V+) +0.3	V
	Signal output pin ⁽³⁾	(V-)-0.3	(V+) +0.3	
	Signal input pin (IN+, IN-) ⁽²⁾	-10	10	mA
Current	Signal output pin ⁽³⁾	-55	55	mA
	Output short-circuit ⁽⁴⁾	Cont	inuous	
	Operating range, T _A	-40	125	
Temperature	Junction, T _J		150	°C
	Storage, T _{stg}	-65	150	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±55mA or less.

(4) Short-circuit from output to $V_{\mbox{\scriptsize CC}}$ can cause excessive heating and eventual destruction.

ESD Ratings

			VALUE	UNIT
V _(ESD)	V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
v (ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage , Vs= (V+) - (V-)	Single-supply	3		36	V
Supply voltage , Vs= (V+) - (V-)	Dual-supply	±1.5		±18	v

Thermal Information: LM393

		LM393	
	THERMAL METRIC ⁽¹⁾	8PINS	UNIT
		SOIC-8(SOP-8)	
Reja	Junction-to-ambient thermal resistance	116	°C/W
Rejc(top)	Junction-to-case(top) thermal resistance	60	°C/W
$R_{\Theta JB}$	Junction-to-board thermal resistance	56	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	12.8	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	98.3	°C/W
RejC(bot)	Junction-to-case(bottom) thermal resistance	N/A	°C/W

PACKAGE/ORDERING INFORMATION

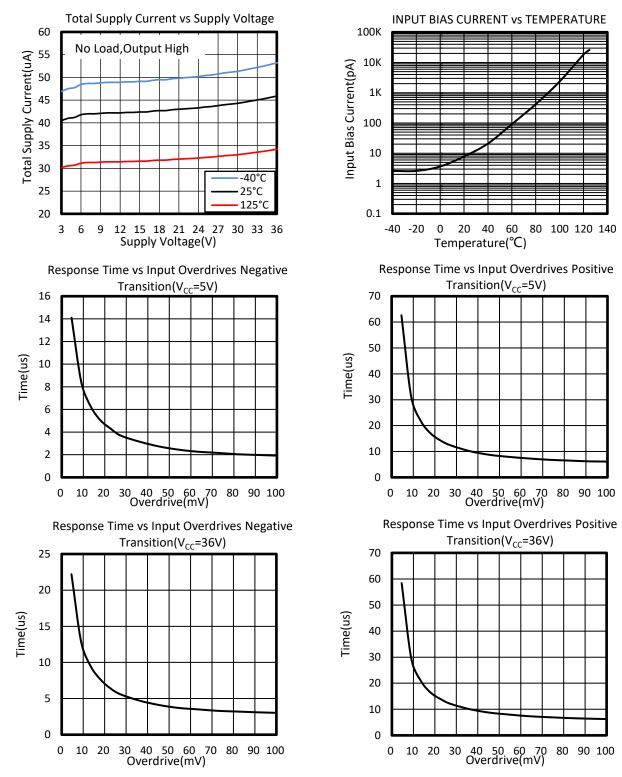
Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽¹⁾	Package Qty
LM393XK	SOIC-8(SOP8)	8	2	-40°C ~+125°C	LM393	Tape and Reel,4000

NOTE:

(1) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

RUNIC

ELECTRICAL CHARACTERISTICS


(At $T_A = +25^{\circ}C$, Vcm=(Vs/2), Vs=5V, unless otherwise noted.)

DADAMETED					LM39	3		
	PARAMETER		CONDITIONS	MIN	TYP	MAX	UINTS	
Vs	Operating Voltage Range			3		36	V	
	IQ Quiescent Current		Vs=5V, no load		40	80		
lq			V _S =36V, no load, T _A =-40°C to +125°C		42	85	uA	
			V _S =5V to 36V	-4.5	±1	4.5		
Vos	Vos Input offset voltage		V _S =5V to 36V T _A =-40°C to +125°C	-5		5	mV	
IB	Input Diag Current		T _A =25°C		10	50	pА	
ID	Input Bias Current		T _A =-40°C to +125°C			100	nA	
laa	Input Offset Current		T _A =25°C		10	50	pА	
los	Input Onset Current		T _A =-40°C to +125°C			100	nA	
			V _S =3V to 36V	(V-)		(V+)-1.5		
Vсм	Common-Mode Voltage Range		V _S =3V to 36V T _A =-40°C to +125°C	(V-)		(V+)-2.0	V	
Avd	Large signal differential voltage amplification		Vs=15V, Vo=1.4V to 11.4V R _L ≥15k to (V+)	50	200		V/mV	
Vol	Low-Level output voltage		I _{sink} ≪4mA, V _{ID} =-1V		210	300	mV	
Iol	Output Current(sinking)		V ₀ =1.5V; V _{ID} =-1V; Vs=5V		27		mA	
L	High-Level Output Leakage	Current	(V+) =Vo=5V; V _{ID} =1V		2	20	nA	
ILEAK		Current	(V+) =Vo=36V; VID=1V		4	50	nA	
Switch	ing Characteristics							
		Vs=5V	RPU=5.1KΩ, Overdrive =10mV		7.8			
Трнг	Propagation Delay H To L	V3-JV	RPU=5.1KΩ, Overdrive =100mV		2.0			
IFAL	Topagation Delay TTTO E	Vs=36V	RPU=5.1KΩ, Overdrive =10mV		11.5			
			RPU=5.1KΩ, Overdrive =100mV		3.0		us	
		Vs=5V	RPU=5.1KΩ, Overdrive =10mV		28			
Трін	Propagation Delay L To H		RPU=5.1KΩ, Overdrive =100mV		6.1			
		Vs=36V	RPU=5.1KΩ, Overdrive =10mV		29			
		V3-00V	RPU=5.1KΩ, Overdrive =100mV		7.1			

TYPICAL CHARACTERISTICS

At $T_A = +25^{\circ}C$, Vs=5V, R_{PULLUP}=5.1K V_{CM} = Vs/2, C_L=15pF, V_{OVERDRIVE}=100mV, unless otherwise noted.

Detailed Description

Overview

The LM393 family of comparators can operate up to 36V on the supply pin. This standard device has proven ubiquity and versatility across a wide range of applications. This is due to its low power and high speed. The open-drain output allows the user to configure the output's logic low voltage (V_{OL}) and can be utilized to enable the comparator to be used in AND functionality.

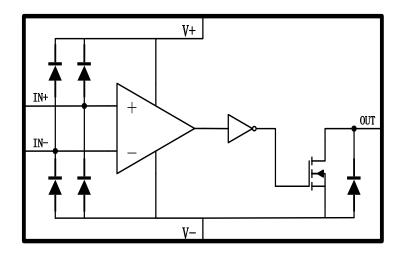


Figure 1. Functional Block Diagram

Application and Implementation Application Information

LM393 is typically used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output (logic high with pull-up) to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes this comparator optimal for level shifting to a higher or lower voltage.

Typical Application

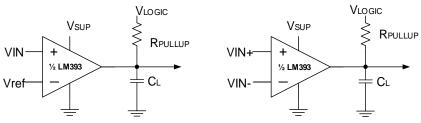


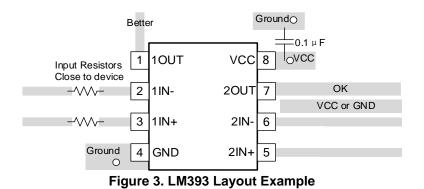
Figure 2. Single-Ended and Differential Comparator Configurations

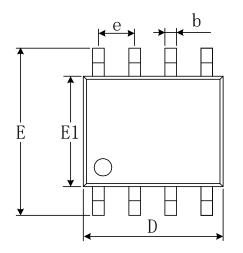
Detailed Design Procedure

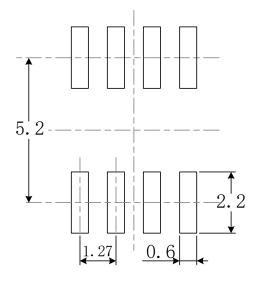
When using the device in a general comparator application, determine the following:

- Input Voltage Range
- Minimum Overdrive Voltage
- Output and Drive Current
- Response Time

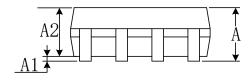
Input Voltage Range

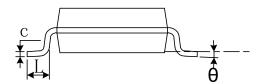

When choosing the input voltage range, the input common mode voltage range (VICR) must be taken in to account. If temperature operation is below 25°C the VICR can range from 0 V to VCC- 2.0 V. This limits the input voltage range to as high as VCC- 2.0 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons.


Layout Layout Guidelines


For accurate comparator applications without hysteresis it is important maintain a stable power supply with minimized noise and glitches. To achieve this, it is best to add a bypass capacitor between the supply voltage and ground. This should be implemented on the positive power supply and negative supply (if available). If a negative supply is not being used, do not put a capacitor between the IC's GND pin and system ground. Minimize coupling between outputs and inverting inputs to prevent output oscillations. Do not run output and inverting input traces in parallel unless there is a VCC or GND trace between output and inverting input traces to reduce coupling. When series resistance is added to inputs, place resistor close to the device.

Layout Example




PACKAGE OUTLINE DIMENSIONS SOIC-8(SOP8)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270	(BSC)	0.050	(BSC)	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	