TTR011 (1K ROM MCU)

Page

Preliminary

TTR011

§ Features

- ◆ Tontek RISC 4-bit CPU core with 2-level stacks
- ◆ All instructions are one word length
- ◆ Most of instructions need one machine cycle (2 CPU clocks) except read table instruction RTB
- Advanced CMOS process
- ♦ 1Kx16 OTP ROM
- ♦ 56x4 SRAM
- ◆ Operating voltage: 2.0V~5.50V
- ◆ Two high-speed clock OSCH selectable: on-chip 910kHz oscillator, external RC oscillator
- One low-speed clock OSCL: on-chip 16kHz oscillator
- Power-on default is low speed mode
- Four operation modes
 - STOP mode: CPU, OSCH and OSCL stop
 - GREEN mode: CPU and OSCH stop; OSCL active for periodical ADC measure and wake-up
 - Low power mode: OSCH stop, OSCL active for CPU and peripheral circuit
 - Normal mode: Both OSCH and OSCL active, CPU clock from OSCH
- ♦ 11 I/O pins + 1 input
 - PA, PB and PC can be configured as wake-up input pins
 - PB and PC can be programmed as input pins with pull-high resistors
 - Four input pins can be defined as external interrupt input pins
 - Shared with 5 ADC input channels and 1 buzzer output
- ◆ 5-channel 4-bit ADC
- One time base timer
 - In GREEN mode, its clock is from the overflow of timer/counter B and its overflow wake up CPU from GREEN mode.
 - In other mode, its clock is from OSCL
- Two 8-bit timer/counter
 - One 8-bit timer/counter B with two sets of auto-preload data to generate periodic waveform for buzzer function.
 - In GREEN mode, the overflow of timer B will trigger ADC check procedure and increment of time base timer 1.
 - One 8-bit timer/counter C with auto reload function

TTR011 (1K ROM MCU)

2013/07/10

2 of 41

Page

Version 3.2

Preliminary

Eight interrupts:

Title

- Internal interrupts: ADC, timer/counter B, timer/counter C, time base timer
- External interrupts: INT0, INT1, INT2, INT3
- ◆ Two on-chip system protections:
 - Watch dog timer(WDT) circuit
 - 4-level low voltage detector: 2.0V, 2.2V, 3.3V, 4.5V
- MCU executes next address instruction or interrupt servicing after wake up
- ◆ Package: SOP 8/16 pins

§ Pin configuration

§ Applications

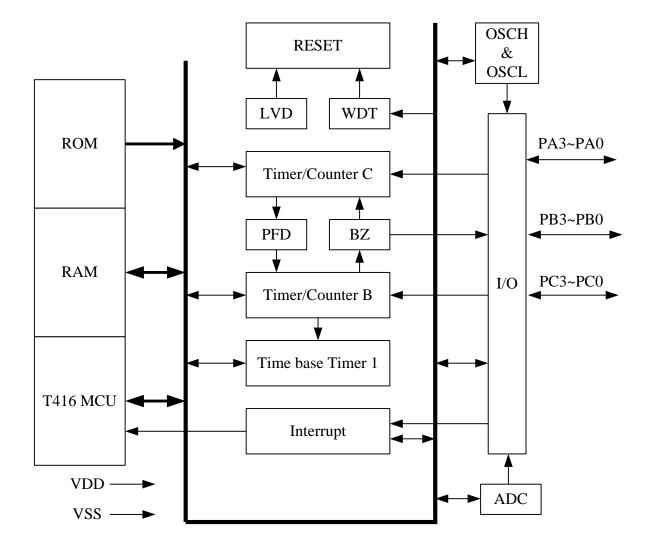
TTR011 can be used in alarm systems in supermarkets, discount stores, etc.

INT2/VPP/PC0 1 16 PC1/INT3 INT2/VPP/PC0 1 8 PC2 INTO/AD0/PA0 2 15 PC2 INTO/ADO/PA0 2 7 PC3 INT1/AD1/PA1 3 14 PC3 INT1/AD1/PA1 3 6 PB3/BZ AD2/PA2 4 13 PB3/BZ VSS 5 VDD 4 AD3/PA3 5 12 PB2/OSCI SOP8-FO8 VSS 6 11 PB1 VDD 7 10 PB0/AD4 NC 8 9 NC SOP16-HOB

§ Ordering Form:

- a. Package form : TTR011-zzz
- b. Chip form :
- c. Wafer base :

ns ed in alarm systems i


Dealiminary						
TTR011 (1K ROM MCU)	Version 3.2	3 of 41				
Title		Page				

77

Preliminary

§ Block Diagram

Figure 1: Block diagram

TTR011 (1K ROM MCU)

Version 3.2

Page

Preliminary

§ Pin Descriptions

Pin Name	Function	Туре	Pin Description							
	PA0	I/O	Input or output port determined by software							
PAO/INT0/AD0	INT0	Ι	External interrupt input as input mode determined							
	AD0	Ι	ADC input channel configured by software							
	PA1	I/O	Input or output port determined by software							
PA1/INT1/AD1	INT1	Ι	xternal interrupt input as input mode determined							
	AD1	Ι	ADC input channel configured by software							
PA2 /AD2	PA2	I/O	Input or output port determined by software							
PAZ/ADZ	AD2	Ι	ADC input channel configured by software							
PA3 /AD3	PA3	I/O	Input or output port determined by software							
PA3/ADS	AD3	Ι	ADC input channel configured by software							
PB0 /AD4	PB0	I/O	Input with or without pull-high resistor or output port determined by software							
-	AD4	Ι	ADC input channel configured by software							
PB1	PB1	I/O	Input with or without pull-high resistor or output port determined by software							
PB2/OSCI	PB2	I/O	Input with or without pull-high resistor or output port determined by software							
,	OSCI	Ι	external oscillator PAD Connect resister to VSS							
PB3/BZ	PB3	I/O	Input with or without pull-high resistor or output port determined by software							
	ΒZ	0	Buzzer output							
PCO/INT2/VPP	PC0	Ι	Input port with or without pull-high resistor determined by software One of the TCPC clock sources as input mode determined							
	INT2	Ι	External interrupt input as input mode determined							
	VPP	Р	OTP ROM Programming pin: 12.5V							
PC1/INT3	PC1	I/O	Input with or without pull-high resistor or output port determined by software One of the TCPC clock sources as input mode determined							
	INT3	Ι	External interrupt input as input mode determined							
PC2	PC2	I/O	Input with or without pull-high resistor or output port determined by software One of the TCPB clock sources as input mode determined							
PC3	PC3	I/O	Input with or without pull-high resistor or output port determined by software							
VDD	VDD	Power	Positive power supply							
VSS	VSS	Power	Negative power supply, ground							

TTR011 (1K ROM MCU)

Page

Preliminary

§ Absolute Maximum Ratings

ITEM	SYMBOL	RATING		
Operating Temperature	Тор	-20°C ~ +70°C		
Storage Temperature	Tst	-50℃ ~ +125℃		
Supply Voltage	VDD	VSS-0.3V ~ VSS+6.0V		
OTP Supply Voltage	VPP	VSS-0.3V ~ VSS+12.5V		
Input Voltage	Vin	VSS-0.3V ~ VDD+0.3V		
ESD(Human Body Mode)	ESD	>5kV		
Note: VSS symbolizes for system ground				

§ DC Characteristics

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Operating Voltage	VDD	OSCH generated by external RC oscillator	2.0		5.5	V
Operating voltage	VDD	OSCH generated by on-chip 910kHZ oscillator	2.0		5.5	V
Operating Current	I_{nd1}	Normal mode, no load, VDD=3.0V, OSCH=3.64MHz		1.0	2.0	mA
Operating Current	I_{nd3}	Normal mode, no load, VDD=3.0V, OSCH=910kHz		0.4	0.7	ША
	Istb1	ADC OFF, OSCH stop, OSCL active, VDD=3.0V, no load		0.8	1.2	uA
GREEN mode Current	Istb2	ADC measurement cycle time=32ms, OSCH stop, OSCL active, VDD=3.0V, no load		1.1	1.5	uA
Input low voltage	V _{IL}	Input Low Voltage	0		0.2	VDD
Input high voltage	V_{IH}	Input High Voltage	0.8		1.0	VDD
Sink Current of output	I _{OL}	VDD=3.0V, V _{OL} =0.6V	2	4		mA
Source Current of output	I _{OH}	VDD=3.0V, V _{OH} =2.4V		-4	-2	mA
Pull-high Resistor of PB and PC	R _{PH}	VDD=3.0V	50	100	150	KΩ
			(ambie	ent tem	perature	is 25°C)

§ AC Characteristics

Parameter	Test Condition	Min.	Тур.	Max.	Unit	
High-speed clock OSCH	External RC oscillator	400K		4M	Hz	
Frequency	On-chip 910kHz oscillator	882k	910K	937k	п	
System stable time after power up	Stable time=(OSCL startup time)+(1/OSCL)X256		17		ms	
Wake up time	Wake up time to low power mode =(OSCL startup time)+(1/OSCL)X4		1		ms	
Wake up time	Wake up time to normal mode =(OSCH startup time)+(1/OSCH)X4		1		ms	
(VDD=3V, ambient temperature is 25°C)						

TTR011 (1K ROM MCU)

Version 3.2

Page

Preliminary

§ Memory Map

ROM ADDRESS	RAM ADDRESS	Function
000 _H		Reset vector
		Jump to start address
001 _H		Interrupt vector
002 _H ~3FF _H		Program ROM
	$000_{H\sim}007_{H}$	File registers
	$008_{H} \sim 01F_{H}$	Peripheral registers
	020 _н ~057 _н	Working RAM [56x4]
	058 _H ~068 _H	Peripheral registers

§ File registers and Peripheral registers:

This table gives a list of the file registers and peripheral registers. "**Default**" indicates each register status upon power on reset. "**R/W**" indicates the register can be read and written. "**R/WO**" indicates the register can be read and only written to "O". "**R**" is read-only. "**W**" is write-only.

Address	Resister	Bit3	Bit2	Bit1	Bit0	R/W	Default	Description	
000 _H	(DP1)	-	-	-	-	R/W	uuuu	Indirect addressing register	
001 _H	ACC	ACC3	ACC2	ACC1	ACC0	R/W	uuuu	Accumulator & Read Table 1 st data	
002 н	TB1	D7	D6	D5	D4	R/W	uuuu	Read Table 2 nd data	
003 _Н	TB2	D11	D10	D9	D8	R/W	uuuu	Read Table 3 rd data	
004 _Н	TB3	D15	D14	D13	D12	R/W	uuuu	Read Table 4 th data	
005 _н	DPL	A3	A2	A1	A0	R/W	0000	Data Pointer low nibble	
006 _н	DPM	A7	A6	A5	A4	R/W	0000	Data Pointer middle nibble	
007 _н	DPH	A11	A10	A9	A8	R/W	0000	Data Pointer high nibble	
008 _н	PS	LVR_EN	H/L	GREEN	STOP	R/W	0000	Power saving control register	
009 _н	INTC1	ADC_IE	TCPC_IE	TCPB_IE	TB1_IE	R/W	0000	Internal interrupt enable register	
00A _H	INTF1	ADC_IF	TCPC_IF	TCPB_IF	TB1_IF	R/W0	0000	Internal interrupt request flag register	
00B _H	CTLA	LVD_DET (R)	LVD_EN (R/W)	TCPCD_LD (R/W)	TCP_RD (R/W)		0000	LVD and timer/counter Control register	
00C _H	TBC/BZC	BZ_EN	-	TB1	TB0	R/W	0-11	Time Base Timer/buzzer control register	
00D _H	PAC	PAC3	PAC2	PAC1	PAC0	R/W	1111	Port A control register	
00E _H	-	-	-	-	-	-	-	Reserved	
00F _H	PA	PA3	PA2	PA1	PA0	R/W	uuuu	Port A data register	
010 н	PB	PB3	PB2	PB1	PB0	R/W	uuuu	Port B data register	
011 н	PC	PC3 (R/W)	PC2 (R/W)	PC1 (R/W)	PC0 (R)		uuuu	Port C data register	
012 н	WK_FG	TB_WK	PC_WK	PB_WK	AD/PA_WK	R/W0	0000	Wake up flag register	
013 н	TCPBC	TCPB_LD	TCPB_CK1	TCPB_CK0	TCPB_EN	R/W	0000	Timer/counter B(TCPB) control register	
014 _H	TCPBDLL	TCPBDL3	TCPBDL2	TCPBDL1	TCPBDL0	R/W	0000	Low nibble register for low data TCPBDL	
015 _н	TCPBDLH	TCPBDL7	TCPBDL6	TCPBDL5	TCPBDL4	R/W	0000	High nibble register for low data TCPBDL	
016 _н	TCPBDHL	TCPBDH3	TCPBDH2	TCPBDH1	TCPBDH0	R/W	0000	Low nibble register for high data TCPBDH	
017 _Н	TCPBDHH	TCPBDH7	TCPBDH6	TCPBDH5	TCPBDH4	R/W	0000	High nibble register for high data TCPBDH	
018 _H	INTC2	INT3_IE	INT2_IE	INT1_IE	INT0_IE	R/W	0000	External interrupt enable register	
019 _Н	INTF2	INT3_IF	INT2_IF	INT1_IF	INT0_IF	R/W0	0000	External interrupt request flag register	
01A _H	ADC_CTL1	ADC_EN	AD_CH2	AD_CH1	AD_CH0	R/W	0000	ADC control register 1	
01B _H	TCPCC	TCPC_CK2	TCPC_CK1	TCPC_CK0	TCPC_EN	R/W	0000	Timer/counter C(TCPC) control register	
01C _H	TCPCDL	TCPCD3	TCPCD2	TCPCD1	TCPCD0	R/W	0000	Low nibble register for data TCPCD	

Title									Page		
TTR011 (1K ROM MCU)							Version 3.2	7 of 41			
Preliminary											
Address											
01D _H	TCPCDH	TCPCD7	TCPCD6	TCPCD5	TCPCD4	R/W	0000	High nibble register fo	or data TCPCD		
01E _H	PBC	PBC3	PBC2	PBC1	PBC0	R/W	1111	Port B control register			
01F _H	PCC	PCC3 (R/W)	PCC2 (R/W)	PCC1 (R/W)	PCC0 (R)		1111	Port C control register			
058 _н	AD0_H	AD0_H3	AD0_H2	AD0_H1	AD0_H0	R/W	uuuu	High limit voltage for ADC0 wake up functio			
059 _н	AD0_L	AD0_L3	AD0_L2	AD0_L1	AD0_L0	R/W	uuuu	Low limit voltage for ADC0 wake up function			
05А _Н	AD1_H	AD1_H3	AD1_H2	AD1_H1	AD1_H0	R/W	uuuu	High limit voltage for ADC1 wake up function			
05В _Н	AD1_L	AD1_L3	AD1_L2	AD1_L1	AD1_L0	R/W	uuuu	Low limit voltage for ADC1 wake up function			
05C _н	AD2_H	AD2_H3	AD2_H2	AD2_H1	AD2_H0	R/W	uuuu	High limit voltage for	ADC2 wake up function		
05D _н	AD2_L	AD2_L3	AD2_L2	AD2_L1	AD2_L0	R/W	uuuu	Low limit voltage for A	ADC2 wake up function		
05E н	AD3_H	AD3_H3	AD3_H2	AD3_H1	AD3_H0	R/W	uuuu	High limit voltage for	ADC3 wake up function		
05F н	AD3_L	AD3_L3	AD3_L2	AD3_L1	AD3_L0	R/W	uuuu	Low limit voltage for A	ADC3 wake up function		
060 н	ADC_D	ADC_D3	ADC_D2	ADC_D1	ADC_D0	R	uuuu	ADC data register	•		
061 _H	ADC_PA	AD3/PA3	AD2/PA2	AD1/PA1	AD0/PA0	R/W	0000	ADC input channel an	d PA select register		
062 _н	AD_WKEN	AD3WKEN	AD2WKEN	AD1WKEN	AD0WKEN	R/W	0000	ADC wake up function	control register		
063 _н	ADC_CTL2	ADCK1	ADCK0	-	AD4/PB0	R/W	00-0	ADC control register 2			
064 _н	PB_PH	PB3_PH	PB2_PH	PB1_PH	PB0_PH	R/W	0000	Port B pull-high regist	er		
065 _н	PC_PH	PC3_PH	PC2_PH	PC1_PH	PC0_PH	R/W	0000	Port C pull-high register			
066 _н	PT_WKEN	-	PC_WKEN	PB_WKEN	PA_WKEN	R/W	-000	Port wake up function			
067 _н	Mod RC16KL	M16K3	M16K2	M16K1	M16K0	R/W	0000	Low nibble of RC16hz	modify register		

§ System Clock and Operation Modes

M16K6

M16K5

There are two clocks, OSCH and OSCL, to be supplied to the CPU and peripheral hardware. OSCL is the low-speed clock. It is generated from on-chip 16kHz oscillator.

R/W

1000

High nibble of RC16hz modify register

M16K4

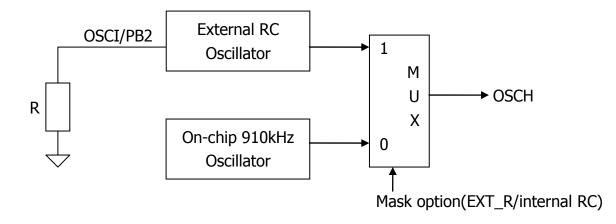

OSCH is the high-speed clock. It can be generated from on-chip 910kHz oscillator or external RC type oscillator that is defined by mask option. If external RC type oscillator is selected, there should be a resistor connected between OSCI pin and VSS.

Figure 2: OSCH circuit

Mod_RC16KH

M16K7

068_H

TTR011 (1K ROM MCU)

Page

Preliminary

 \diamond PS : Power saving control register [R/W] : 008_H , default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	LVR_EN	H/L	GREEN	STOP
Read/write	R/W	R/W	R/W	R/W

STOP : STOP mode enable (0: inactive; 1: active)

GREEN : GREEN mode enable (0: inactive; 1: active)

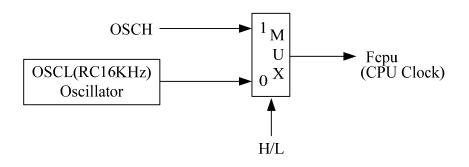
H/L : CPU clock select

=1 : select high speed clock (OSCH), CPU enters normal mode

=0 : select low speed clock (OSCL), CPU enters low power mode

LVR_EN : (ROM-ready type) LVR enable

=0 : disable LVR


=1 : enable LVR

CPU clock (Normal mode & low power mode)

The CPU clock comes from OSCH or OSCL clocks which are controlled by H/L bit in PS register. When the MCU sets H/L bit = "1", The CPU enters normal mode and operates in the high speed clock (OSCH). In this mode, the OSCL is also active.

When the MCU sets H/L bit = "0", The CPU enters low power mode and operates in the low speed clock (OSCL). In this mode, the OSCH will be turn off. The high speed oscillators are shut down to save the power consumption. The others circuits of the MCU which use the OSCH clock are also idle to reduce the power consumption. The CPU also enters low power mode after power-up and reset.

Figure 3: CPU clock circuit

TTR011 (1K ROM MCU)

Preliminary

Power saving modes (STOP mode & GREEN mode)

The MCU enters STOP or GREEN mode by writing STOP bit or GREEN bit in PS register. During these modes, MCU holds some of the internal circuits to save the power consumption.

When the MCU sets STOP bit = "1", the MCU enter the STOP mode. Both of the clocks, OSCH and OSCL, are turn off. The MCU can be released from STOP mode by reset, interrupt, or wake-up event. When the system is waked up, it need a warm-up time for the stability of system clock running.

When the MCU sets GREEN bit = "1", the MCU enter the GREEN mode. In GREEN mode, the OSCH clock will be stopped, and RC16Khz oscillator (OSCL) is still on. The system can wake up from auto time-out (TB1) and ADC change (in ADC check procedure) wake-up for the alarm system application.

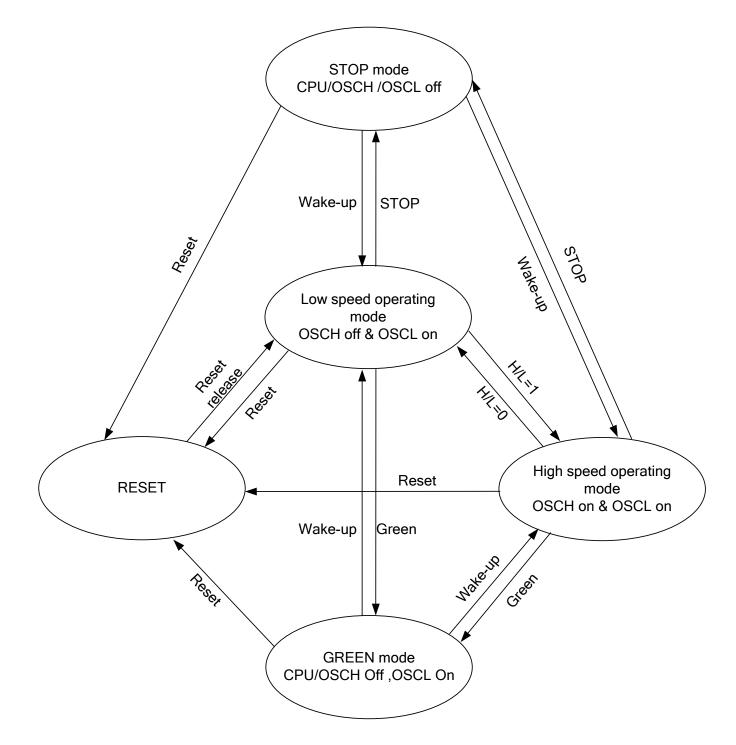
Power saving modes condition & Release							
Modes	STOP mode	GREEN mode					
High speed oscillator	Stopped	Stopped					
Low speed oscillator	Stopped	Keep Operating					
CPU clock	Stopped	Stopped					
CPU internal status	Stop & F	Retain the status					
Memory, Flag, Register, I/O	Retain the status						
Program counter	Hold the next executed address						
Peripherals: Time							
base, Timers,	Stopped & Retain	Keep Operating					
Interrupts							
Watch Dog Timer	Disabled	& cleared					
Release Condition	Reset ,	Reset,					
	external INT,	external INT,					
	Input change wake-up	internal INT,					
		Input change wake-up,					
		TB1 time-out wake-up,					
		ADC change wake-up					

♦ Power saving modes condition & Release

MCU System Operation Modes

The MCU has the 4 operation modes, including normal mode, low speed mode , STOP mode , and GREEN mode . After power on reset, the MCU will go into low speed mode

Page


Version 3.2

TTR011 (1K ROM MCU)	Version 3.2	10 of 41
Title		Page

automatically and the CPU operate in the low speed clock (OSCL). After wake up from STOP/GREEN mode, the MCU will resume the last operation mode.

/7

Figure 4: state diagram of system operation modes

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	11 of 41

OSCILLATOR STABLE TIME (OST)

The system oscillator generates the system control timing for CPU core or peripheral devices with fixed control phase, so the waveform of oscillator becomes sensitive to many kinds of noise. The abnormal duty is especially fatal for CPU. Any switching of clock source needs oscillation stable time (OST) to make sure the oscillation is stable and synchronized with CPU timing phase.

The OST is 256's RC16K clocks after power up. When waking up to normal mode, The OST is 4's OSCH clocks. When waking up to low power mode, the OST is 4's RC16K (OSCL) clock.

Adjustment of OSCL (RC16KHz)

The OSCL is RC type oscillator. The resistance and capacitance of the built-in resistor and capacitor will vary piece by piece at the wafers. Then the frequency of OSCL will vary as the resistance and capacitance vary. When the chip is used in the hot or cold environment, the frequency of OSCL will change as the temperature of environment. It will also change as the power voltage of the chip is change. There is above 100% variation of the OSCL frequency in the worst case.

This chip provides a way to correct the OSCL frequency. If on-chip 910KHz is used as OSCH, it provides a 3% accurate oscillator to MCU. The user software can compare OSCL with OSCH by the timer/counter B (TCPB) and C (TCPC). If the OSCL is slower than 16KHz, decreasing Mod_RC16KH or Mod_RC16KL will speed up 16KHz. If the OSCL is faster than 16KHz, increasing Mod_RC16KH or Mod_RC16KL speed up 16KHz. Every 1 increment will slow down about 1.5% of frequency at RC16KHz. Here is a simple method to adjust the OSCL frequency:

- Step 1: set TCPC condition TCPCD = FF_H
- Step 2: set TCPB conditions TCPBDH = FF_H , TCPBDL = FF_H
- Step 3: enable TCPC at conditions Input clock = RC16KHz, auto-reload
- Step 4: enable TCPB at conditions Input clock = Fcpu, auto-reload
- Step 5: count 6 overflows from TCPB, and record how many of TCPCOV occur
- Step 6: Compute the total count of RC16KHz Read TCPC counter value and do 1's complement, and add 255 for every TCPCOV
- Step 7: disable TCPB and TCPC
- Step 8: if the total count < 54, subtract 1 to M16K7~0 and go to Step 3

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	12 of 41

Preliminary

Step 9: if the total count > 55, add 1 from M16K7~0 and go to Step 3 Step 10: wait about 10 min. then go to Step 1 to do adjustment again

Mod_RC16KL : Low nibble of RC16KHz modify register [R/W] : 067_H , default value [0000] ∻

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	M16K3	M16K2	M16K1	M16K0
Read/write	R/W	R/W	R/W	R/W

M16K3~0 : low nibble to modify 16KHz frequency

Mod_RC16KH : High nibble of RC16KHz modify register [R/W] : 068_H , default value [1000] ∻

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	M16K7	M16K6	M16K5	M16K4
Read/write	R/W	R/W	R/W	R/W

M16K7~4 : high nibble to modify 16KHz frequency

TTR011 (1K ROM MCU)	Version 3.2	Page 13 of 41

§ Interrupts

The CPU provides only 1 interrupt vector (\$001H) for all interrupts. All of them have the same priority in the hardware. The first coming interrupt will be served firstly. When above two interrupts are coming, the software can decide the priority to serve them.

Interrupt sources include three timer/counter overflow interrupts (TB1 INT, TCPB INT, and TCPC INT), ADC conversion complete interrupt, and four external interrupts (INT0 INT from AD0/PA0/INT0 pin , INT1 INT from AD1/PA1/INT1 pin , INT2 INT from PC0/VPP/INT2 pin, and INT3 INT from PC1/INT3 pin).

The interrupt enable registers (INTCx) contain the interrupt enable control bits to enable and disable corresponding interrupt request and the corresponding interrupt request flags in the INTFx registers. Before finishing the INT service routine, another INT request will keep waiting until program return from interrupt routine.

\diamond	$INTC1$: Internal interrupt enable register [R/W] : 009_H , default value [0000]	
------------	---	--

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	ADC _IE	TCPC_IE	TCPB_IE	TB1_IE
Read/Write	R/W	R/W	R/W	R/W

TB1_IE: Enable interrupt of time base timer 1. (0: disable; 1: enable) TCPB_IE: Enable interrupt of timer/counter B. (0: disable; 1: enable) TCPC_IE: Enable interrupt of timer/counter C. (0: disable; 1: enable) ADC_IE : Enable interrupt of the ADC conversion. (0: disable; 1: enable)

♦ INTC2 : External interrupt enable register [R/W] : 018_H , default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	INT3_IE	INT2_IE	INT1_IE	INT0_IE
Read/Write	R/W	R/W	R/W	R/W

INT0_IE: Enable the external AD0/PA0/INT0 interrupt (0: disable; 1: enable) INT1_IE: Enable the external AD1/PA1/INT1 interrupt (0: disable; 1: enable) INT2_IE: Enable the external PC0/VPP/INT2 interrupt (0: disable; 1: enable) INT3_IE: Enable the external PC1/INT3 interrupt (0: disable; 1: enable)

♦ INTF1 : Internal interrupt request flag register [R/W0] : 00A_H , default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	ADC_IF	TCPC_IF	TCPB_IF	TB1_IF

Title	Π	R011 (1	Version 3.2	Page 14 of 41		
			Pre	liminary		
	Read/Write	R/W0	R/W0	R/W0	R/W0	

TB1_IF: TIME base Timer1 interrupt request flag for overflow. (0: inactive; 1: active) TCPB_IF: Timer/counter B interrupt request flag for overflow. (0: inactive; 1: active) TCPC_IF: Timer/counter C interrupt request flag for overflow. (0: inactive; 1: active) ADC_IF: ADC interrupt request flag for conversion complete. (0: inactive; 1: active)

♦ INTF2 : External interrupt request flag register [R/W0] : 019_H , default value [0000]

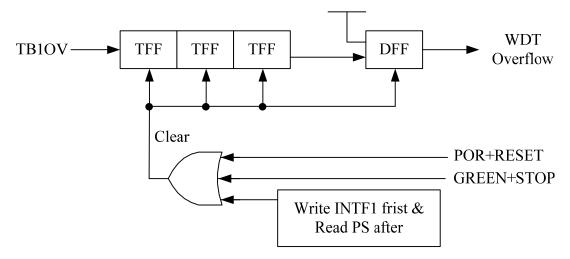
RegisterBit3Bit2Bit1Bit0Bit NameINT3_IFINT2_IFINT1_IFINT0_IFRead/WriteR/W0R/W0R/W0R/W0INT0_IF:INT0 interrupt request flag for change. (0: inactive; 1: activeINT1_IF:INT1 interrupt request flag for change. (0: inactive; 1: activeINT2_IF:INT2 interrupt request flag for change. (0: inactive; 1: activeINT3_IF:INT3 interrupt request flag for change. (0: inactive; 1: active						- · ·
Read/WriteR/W0R/W0R/W0INT0_IF:INT0 interrupt request flag for change. (0: inactive; 1: activeINT1_IF:INT1 interrupt request flag for change. (0: inactive; 1: activeINT2_IF:INT2 interrupt request flag for change. (0: inactive; 1: active	Register	· Bit	3	Bit2	Bit1	Bit0
INTO_IF: INTO interrupt request flag for change. (0: inactive; 1: active INT1_IF: INT1 interrupt request flag for change. (0: inactive; 1: active INT2_IF: INT2 interrupt request flag for change. (0: inactive; 1: active	Bit Name	e INT3	_IF	INT2_IF	INT1_IF	INT0_IF
INT1_IF: INT1 interrupt request flag for change. (0: inactive; 1: active INT2_IF: INT2 interrupt request flag for change. (0: inactive; 1: active	Read/Wri	te R/V	V0	R/W0	R/W0	R/W0
INT2_IF: INT2 interrupt request flag for change. (0: inactive; 1: active	INT0_IF:	INT0 int	errup	t request flag f	or change. (0:	inactive; 1: active)
	INT1_IF:	E: INT1 interrupt request flag for change. (0: inactive; 1: active)				
INT3_IF: INT3 interrupt request flag for change. (0: inactive; 1: active	INT2_IF:	INT2 int	errup	t request flag f	or change. (0:	inactive; 1: active)
	INT3_IF:					

If the interrupt request needs service, the user software may set the corresponding interrupt enable bit. The internal timer/counter interrupt flag (TCPx_IF) is set to 1, resulting from the timer/counter overflow.

When the corresponding interrupts are enabled and their flag bits are set to 1, the CPU will active the interrupt service routine. Then CPU reads the service flag bits and check the request priority then proceeds with the relative interrupt service. After CPU writes the corresponding bits to 0 in the INTF register, the INT flag bit will be cleared to 0 (using STX #n, \$m instruction). The CPU can only write "0" to clear the flag bit. Writing "1" to flag bit will do nothing to it.

§ Watch Dog Timer (WDT)

The clock of watch dog timer comes from time base overflow (TB1OV). The time-up signal of WDT can prevent a software malfunction or abnormal sequence from jumping to an unknown memory location, before the system is going to fatal failure. Normally, when the time-up signal of WDT is active, it will reset the chip. At the same time, program and hardware can be initialized to resume system back to normal operation. The chip needs 2 steps to clear WDT. The programmer writes INTF1 with \$F data first to enable the WDT clear, and then reads the power saving (PS) control register after. After finishing the two write/read steps in order, the watch dog timer will be cleared. User should well arrange the two command steps for avoiding the dead lock loop. *User should keep in minds that always reset WDT at main program and*


Title		Page
TTR011 (1K ROM MCU)	Version 3.2	15 of 41

never clear the WDT in the interrupt routine.

The max period of WDT = (TB10V cycle time) * 8

In GREEN mode, The time base timer 1 is combined with timer/counter TCPB to generate a long period timer for auto wake-up function. The WDT is cleared in this mode. The TB1OV is also ignored by the WDT. In STOP mode, all the oscillators are turned off. The WDT is also cleared.

Figure 5: WDT circuit

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	16 of 41

§ RESET

The chip has three kinds of reset sources: POR (power on reset), Watch dog timer reset, LVR (low voltage reset). The reset feature can be divided into 2 kinds of groups. One is system reset and the other is CPU reset. The system reset will initialize the CPU and peripheral device with default state. The CPU reset only initializes the CPU state and keeps the peripheral state no change.

System reset

.POR (power on reset)

The chip provides automatic reset function when the power is turned on. The reset will be active by POR when the VDD is below 1.4V and its rising slope (from 0.1VDD up to 0.9VDD) is less than 10ms.

CPU reset

.Watch Dog Timer Reset

The reset will happen automatically when the watchdog timer runs overflow. If the watchdog timer is cleared regularly by the user software before overflow, no watchdog reset will occur. While the CPU is forced into abnormal state, the regular software procedure is disrupted and the watchdog timer may overflow by no clear coming. The overflow of WDT will generate reset to return CPU to the reset procedure. Thus the CPU goes back to normal operation. The H/L and GREEN and STOP bits will also be cleared by WDT.

. LVR (low voltage reset)

The LVR is a low system voltage detector. As the operating voltage falls below the detected window, then the LVR will make the CPU start the reset procedure. The LVR can be disabled by setting the LVREN bit of PS register to "0". When the low system voltage occurs in this condition, The CPU will cease to do any instruction. But the system states have opportunity to be corrupted by this low system voltage. The following table shows the relationship between LVR and detected voltage. The H/L and GREEN and STOP bits will also be cleared by LVR.

LVR	System RESET	Detected Vop
0→1	active	1.2V~1.8V

Title	TTR011 (1K	ROM MCU)	Version 3.2	Page 17 of 41	
		Prelimina	ſy		
	1→0	inactive		>1.8V	

For OTP MCU, hardware needs to download the mask options into registers. It happens at power on reset, watch dog overflow reset and LVR reset.

§ System Register Description

\$000(DP1) : Index == 虛擬指標暫存器

這不是一個實際的暫存器,只用來當做間接定址的指標,當對此位址讀寫或運算或 讀取ROM TABLE 時,CPU 實際是以DPH,DPM,DPL 所組成的 12 位元為地址線,讀取ROM 的資料或是對RAM 做運算或讀寫資料.

\$001: Acc == 累積器

除了當成一般暫存器使用外;當需要將暫存器或RAM 的資料轉換到其他RAM 或暫存 器時累積器是一個重要的中繼站,先使用LDA 指令讀取暫存器或RAM 的資料暫存在 累積器,再用STX 指令存到想要存放的暫存器或RAM 中,來達成暫存器或RAM 的資 料轉換;此外在做邏輯或算數運算時,若是選擇結果放到ACC,則運算完的結果將會 存到累積器中;在使用直接指令模式運算,累積器是二個運算來源之一;若是使用 RTB 指令讀取ROM TABLE 時,讀取到的資料是 16 位元,其中最低的 4 位元(D3~D0) 也會暫存在累積器中

\$002:TB1 == 讀表暫存器1

此暫存器提供我們在使用RTB 指令讀取ROM TABLE 時,暫時存放讀取 16 位元資料 中的次低 4 位元(D7~D4)用;在不使用讀表功能時,此暫存器可當作一般暫存器使用.

\$003:TB2 == 讀表暫存器 2

與TB1 同樣功能,此暫存器提供我們在使用RTB 指令讀取ROM TABLE 時,暫時存放 讀取16 位元資料中的次高4 位元(D11~D8)用;在不使用讀表功能時,此暫存器可當 作一般暫存器使用.

\$004:TB3 == 讀表暫存器3

同樣的此暫存器提供我們在使用RTB 指令讀取ROM TABLE 時,暫時存放讀取 16 位 元資料中的最高 4 位元(D15~D12)用;在不使用讀表功能時,此暫存器可當作一般 暫存器使用.

Title	Marian 2.2	Page
TTR011 (1K ROM MCU)	Version 3.2	18 of 41

\$005:DPL == 低位指標暫存器,

使用間接方式對RAM 位址讀寫或運算時,此暫存器是指標(DP)的 10 條地址線中最低的4 位元(A3~A0);同時亦是使用RTB 指令讀取ROM TABLE 資料的12 位元地址線中最低的4 位元(A3~A0),所以運用在上述二種方式使用之前必須先設定此暫存器. 若是與上述的使用不衝突時可當作一般暫存器使用.

\$006:DPM == 中位指標暫存器,

與DPL 功能相同,在使用間接方式對RAM 位址讀寫或運算時,此暫存器是指標(DP) 的10 條地址線之中間的4 位元(A7~A4);同時亦是使用RTB 指令讀取ROM TABLE 資 料的12 位元地址線之中間的4 位元(A7~A4),所以運用在上述二種方式使用之前必 須先設定此暫存器.若是與上述的使用不衝突時可當作一般暫存器使用.

\$007:DPH == 高位指標暫存器,

與上述二暫存器功能相同,在使用間接方式對RAM 位址讀寫或運算時,此暫存器是 指標(DP)的 10 條地址線中最高的 2 位元(A9~A8),A10 及A11 會被忽略掉一般設定 為"0";同時亦是使用RTB 指令讀取ROM TABLE 資料的 12 位元地址線中最高的 4 位元(A11~A8),所以運用在上述二種方式使用之前必須先設定此暫存器.若是與上 述的使用不衝突時可當作一般暫存器使用.

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	19 of 41

§ Wake up

After the CPU wakes up from STOP or GREEN mode, it can know which source makes wake-up occur from the wake-up flag. Then the user software may choose the proper routine for the dedicated wake-up source.

There are 3 sources which make the CPU wake-up from STOP mode. They include : power on reset, external INT, and input change. Except power on reset which initializes the whole system, the others make the CPU execute the instruction after the last one which is executed before STOP mode occurs.

There are 6 sources which make the CPU wake-up from GREEN mode. They are : power on reset, external INT, internal INT, input change, auto time-out (TB1), and ADC change (in ADC check procedure). Except power on reset which initializes the whole system, the others make the CPU execute the instruction after the last one which is executed before GREEN mode occurs.

Note: The instruction that follow the STOP or GREEN mode (set by PS register) must be NOP, and two NOP instructions must be followed, it make sure to wake up success.

Port wake up enable

The Port Wake-up enable register can enable or disable the wake-up from the input change of the ports. There are 3 port wake-up enable bits for 3 ports each. All pins in the same port are controlled by the same wake up enable bit.

Ŷ							
	Register	Bit3	Bit2	Bit1	Bit0		
	Bit Name		PC_WKEN	PB_WKEN	PA_WKEN		
	Read/Write	R0	R/W	R/W	R/W		

 \diamond PT_WKEN : Port wake up enable register [R/W] : 066_H, default value [-000]

PA_WKEN : control PORT A (pa0~3) input change wake up when those are input pins.

=0 : disable wake-up

=1 : enable wake-up

PB_WKEN : control PORT B (pb0~3) input change wake up when those are input pins.

=0 : disable wake-up

=1 : enable wake-up

PC_WKEN : control PORT C (pc0~3) input change wake up when those are input pins.

=0 : disable wake-up

=1 : enable wake-up

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	20 of 41

Wake up flag

The Wake-up flag register records which wake-up sources take place. When waked up, the user software should read this register to choose the corresponding service routine for each flag bit. The corresponding wake-up flag bit must be cleared before entering STOP or GREEN mode. After CPU writes the corresponding bit to "0" in the register, the wake-up flag bit will be cleared to 0 (using STX #n, \$m instruction). The user software can only write "0" to clear the wake-up flag bit. Writing "1" to the flag bit will do nothing to it.

♦ WK_FG : wake-up flag register [R/W0] : 012_H , default value [0000]

—	1 3 3		,	
Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TB_WK	PC_WK	PB_WK	AD/PA_WK
Read/Write	R/W0	R/W0	R/W0	R/W0

AD/PA_WK: The wake-up flag for ADC max/min range check fail in GREEN mode, and input change of any input pins of PA (Pa0~3) (0: inactive; 1: active)

- PB_WK: The wake-up flag for input change of any input pins of PB (Pb0~3) (0: inactive; 1: active)
- PC_WK: The wake-up flag for input change of any input pins of PC (Pc0~3) (0: inactive; 1: active)
- TB_WK: The wake-up flag for overflow of time base timer 1 in GREEN mode (0: inactive; 1: active)

TTR011 (1K ROM MCU)

Page

Preliminary

§ Peripheral function description:

Control register

Title

The control register includes timer/counter control bits and low voltage detect/control bits. The user software can turn on LVD and find out whether the power is below the low voltage or not in this register. There are four voltages selected in the mask option register. Because the LVD consume some operation current, so it will be automatically turned off when entering into STOP or GREEN mode. It takes 500us to be stable after enabling the LVD_EN bit. Do not read the LVD_DET bit before the stable of the LVD circuit.

 \diamond CTLA : LVD and time/counter control register [R/W] : 00B_H , default value [0000]

	1	5	<u> </u>	11 /
Register	Bit3	Bit2	Bit1	Bit0
Bit Name	LVD_DET	LVD_EN	TCPC_LD	TCP_RD
Read/Write	R	R/W	R/W	R/W

TCP_RD : control reading from counter data register or pre-load data register of the timer/counter B & C.

=0 : read from counter data register

- =1 : read from pre-load data register
- TCPC_LD : enable auto-reload function of timer/counter C
 - =0 : disable auto-reload function
 - =1 : enable auto-reload function
- LVD_EN : enable low voltage detect function
 - =0 : disable low voltage detect function
 - =1 : enable low voltage detect function
- LVD_DET : show whether the power below low voltage or not
 - =0 : the power not in low voltage state
 - =1 : detect a low voltage happen

Time Base Timer 1 and Buzzer control

The register includes the four selections of the overflow time in time base timer 1, and buzzer output enable.

The clock of time base timer 1 is from OSCL (16KHz) normally. But in GREEN mode, it gets the clock from the overflow of time/counter B, and its overflow wakes up CPU. But the

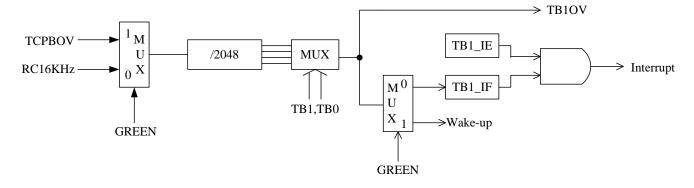
Title		Page
TTR011 (1K ROM MCU)	Version 3.2	22 of 41

overflow will not generate a interrupt request, even when the TB1_IE bit is set in the INTC1 register. Also the interrupt flag bit, ADC_IF, is leave no change in GREEN mode. The combination of timer/counter B and time base timer1 let the MCU stay a long period time in the GREEN mode.

 \diamond TBC/BZC : Time base timer/buzzer control register [R/W] : 00C_H , default value [0-11]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	BZ_EN		TB1	TB0
Read/Write	RW	R0	R/W	R/W

TB1, TB0 : select overflow count of time base timer 1 in GEEN mode, or overflow time of time base timer 1 as the following table:


TB1	TB0	GREEN mode	Ot	her modes
IDI	IDU	Overflow count	Overflow time	Overflow frequency
0	0	256	15.625 ms	16kHz / 256 = 64 Hz
0	1	512	31.25 ms	16kHz / 512 = 32 Hz
1	0	1024	62.5 ms	16kHz / 1024 = 16 Hz
1	1	2048	125 ms	16kHz / 2048 = 8 Hz

BZ_EN : enable the output pin of buzzer

=0 : PB3/BZ defined as PB3

=1 : PB3/BZ defined as BZ output pin

Figure 6: Time base timer 1 circuit

8 bits Timer/counter B for TCPB

The 8-bit timer/counter B with two pre-load data buffers provides four clock sources to be selected. The clock sources includes: Fcpu (CPU clock), PC2, OSCL (16Khz), and PFD clock from TCPC. When the TCPB_EN bit is "0", the pre-load data buffers, TCPBDHH and TCPBDHL, will keep being loaded into counter. Any value written to TCPBDHH and TCPBDHL is also

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	23 of 41

loaded to counter. After writing the TCPB_EN to "1", it depends on auto-load function to control how to reload to counter.

The overflow signal of TCPB is TCPBOV. The rising edge of TCPBOV will set the relative INT flag. If disabling auto-reload function by writing TCPB_LD to "0", the TCPBOV will be active after TCPB counts up from the 1's complement of TCPBDH to "FF_H". If enabling auto-reload function, the TCPBOV will be active until TCPB counts up both the values reloaded in order from the TCPBDH and TCPBDL.

In the condition that TCPBDH is written 00_{H} , Enabling TCPB will make a immediate counter overflow. It will trigger reload TCPBHL in the auto-reload mode. Or it will activate TCPBOV and count across to 00_{H} when the auto-reload function is disabled.

After the BZ_EN bit is set to 1 in the TBC/BZC register, TCPB provides buzzer function by directing the TCPBOV signal waveform to the PB3 pin. No matter what the TCPB_LD bit is, the auto-reload function will be active.

When setting the TCP_RD bit to 0 in the CTLA register, Reading TCPBDH or TCPBDL get the same value from the counter of TCPB. Because the counter is loaded the 1's complement of TCPBDH or TCPBDL and counts up, the value read from the counter needs to be translated. If writing TCP_RD bit to 1, Reading TCPBDH (or TCPBDL) get the value from the pre-load data buffer of TCPBDH (or TCPBDL).

<u> </u>		- J L /	_ = = 11 / = =	L
Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPB_LD	TCPB_CK1	ТСРВ_СКО	TCPB_EN
Read/Write	R/W	R/W	R/W	R/W

 \diamond TCPBC: Timer/counter B control register [R/W] : 013_H , default value [0000]

TCPB_EN : control enable timer/counter B counting

=0 : disable TCPB

=1 : enable TCPB

TCPB_CK1, TCPB_CK0 : select clock sources for TCPB except GREEN mode as the following table:

TCPB_CK1	TCPB_CK0	clock source
0	0	Fcpu (CPU clock)
0	1	PC2
1	0	RC16KHz (OSCL)
1	1	PFD (from TCPC)

TCPB_LD : control auto-reload function of timer/counter B

=0 : disable auto-reload function

_
_

TTR011 (1K ROM MCU)

Page

Preliminary

=1 : enable auto-reload function

♦ TCPBDLL: Low nibble register for low data TCPBDL [R/W] : 014_H, default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPBDL3	TCPBDL2	TCPBDL1	TCPBDL0
Read/Write	R/W	R/W	R/W	R/W

TCPBDL3~TCPBDL0: low nibble for low data buffer TCPBDL.

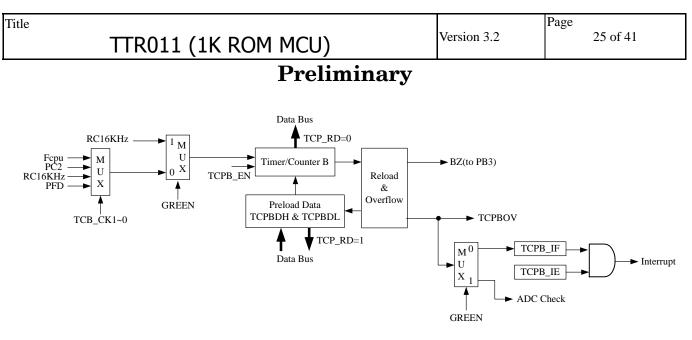
 \diamond TCPBDLH: High nibble register for low data TCPBDL [R/W] : 015_H, default value [0000]

Register	Bit3	Bit2 Bit1		Bit0
Bit Name	TCPBDL7	TCPBDL6	TCPBDL5	TCPBDL4
Read/Write	R/W	R/W	R/W	R/W

TCPBDL7~TCPBDL4: high nibble for low data buffer TCPBDL.

 \diamond TCPBDHL: low nibble register for high data TCPBDH [R/W] : 016_H, default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPBDH3	TCPBDH2	TCPBDH1	TCPBDH0
Read/Write	R/W	R/W	R/W	W


TCPBDH3~TCPBDH0: low nibble for high data buffer TCPBDH.

 \diamond TCPBDHH: high nibble register for high data TCPBDH [R/W] : 017_H, default value [0000]

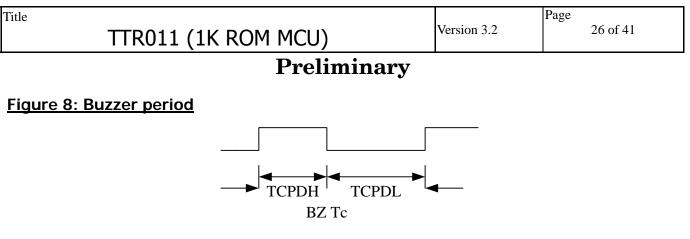
Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPBDH7	TCPBDH6	TCPBDH5	TCPBDH4
Read/Write	R/W	R/W	R/W	R/W

TCPBDH7~TCPBDH4: high nibble for high data buffer TCPBDH.

Figure 7: Timer/counter B (TCPB) circuit

Timer

When TCPB works as a timer in auto-reload mode, the user software sets the two pre-load data buffers, TCPBDH (output high level) and TCPBDL (output low level), for periodic timing generation. After initialization, the user software starts TCPB to count by setting TCPB_EN to "1", the TCPB cycle period is:


Tc = (selected clock cycle) * (TCPBDH+TCPBDL)

When writing data to the TCPBDH, the data will also be loaded to counter if TCPB_EN is "0". The 1's complement value of TCPBDH will be pre-loaded into counter TCPB as initial value. Writing TCPB_EN to "1" starts the count-up function. The timer reloads TCPBDL to counter as TCPB up-counts and reaches the value of "FF_H" or 255. After TCPBDL reloaded to counter, the next reload data is TCPBDH. The TCPBDH and TCPBDL will be re-loaded to counter alternately. When the TCPBDH is reloaded, the overflow TCPBOV and the interrupt request flag TCPB_IF will be active. If enabling the corresponding interrupt enable bit, the INT circuit will activate MCU interrupt service routine.

> BZ

The buzzer feature is active in TCPB, as the BZ_EN bit is set to 1 in the TBC/BZC register. The buzzer output the waveform to the PB3 pin. The auto-reload function will be turned on automatically no matter what the TCPB_LD bit is. Usually the user software will disable the interrupt feature for tone or melody generation. The BZ frequency is:

BZ frequency = (selected clock frequency) / (TCPDH+TCPDL)

> TCPB and TB1 in GREEN mode

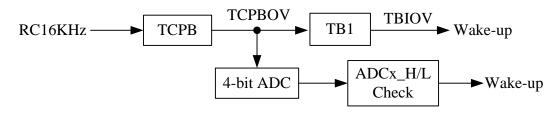
The combination of TCPB and TB1 provides many features in GREEN mode. In this mode, the input clock of TCPB is fixed to OSCL (16KHz), and runs in auto-reload mode. After automatically counting up and reloading TCPBDH/TCPBDL in order, the overflow TCPBOV is active to generate one ADC check procedure which measure ADC at one selected channel and check the conversion result with the High/Low limit by hardware circuit. The four channels AD0~3 will be selected in order at each overflow. Before the ADC check procedure for some channel going, it will confirm The ADxWKEN bit of the channel is set to "1" in the AD_WKEN register. If the user software doesn't want to do this check procedure for some channel, it can set the corresponding ADxWKEN bit to "0", and leave nothing to do in this overflow. The period time for this ADC check procedure is:

Tp_adcc = (period of 16KHz) * (TCPBDH+TCPBDL)

No matter what the TCPB_IE bit is, the interrupt from the overflow TCPBOV will be disabled in GREEN mode, and its interrupt flag is also left alone. No matter what the ADC_IE bit is, the interrupt after ADC conversion complete will be disabled in the ADC check procedure, and its interrupt flag is also left no change. If the ADC conversion result is above the high limit ADx_H or below the low limit ADx_L in the ADC check procedure, the wake-up will be invoked. The user software can read the ADC wakeup bit of the WK_FG register to make sure.

The input clock of TB1 is fixed to TCPBOV in GREEN mode. The overflow TB1OV will set the Auto Time Out bit of the WK_FG register and invoke the CPU to wake up. No matter what the TB1_IE bit is, the interrupt from the overflow TB1OV will be disabled in GREEN mode, and its interrupt flag is also left no change. The period time for TB1OV is:

Tp_tb1 = (Tp_adc) * (selected overflow count)


The user software can choose the period time to do the ADC check procedure. If its power consumption is the most concern, it can select the maximum period time of TCPBOV:

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	27 of 41

If the longest GREEM mode is also wanted, the user software can choose the longest overflow time of TB1. The maximum period time is:

Max. Tp_tb1 = (31.875 ms) * (2048) ~= 65.28 s

Figure 9: Combination circuits in GREEN mode

♦ 8 bits Timer/counter C for TCPC

The 8-bits timer/counter C with pre-load data buffer provides five clock sources. The clock sources includes: OSCL (16Khz), PC0, PC1, Fcpu (CPU clock), and BZ clock from TCPB. The TCPCOV is the overflow signal of TCPC, and its rising edge will set the relative INT flag.

When the TCPC_EN bit in the TCPCC register is "0", the pre-load data buffers, TCPCDH and TCPCDL, will keep being loaded into counter. Any value written to TCPCDH and TCPCDL is also loaded to counter. After setting the TCPC_EN bit to "1", the counter starts to increase according to the clock source. The counter will be reloaded from TCPCDH and TCPCDL until overflow occurs, if enabling the auto-load function by writing the TCPC_LD bit to "1" in the CTLA register.

The overflow signal of TCPC is TCPCOV. The rising edge of TCPCOV will set the relative INT flag. The TCPCOV will be active after TCPC counts up from the 1's complement of TCPCD to "FF_H". In the condition that TCPCD is written " 00_{H} ", Enabling TCPC will make a immediate counter overflow. It will activate TCPCOV, and count across to " 00_{H} ".

When setting the TCP_RD bit to "0" in the CTLA register, Reading TCPCDL and TCPCDH will get the values from the counter of TCPC. Because the counter is loaded the 1's complement of TCPCD and counts up, the value read from the counter needs to be translated. If setting TCP_RD bit to 1, Reading TCPCDL and TCPCDH get the values from the pre-load data buffer of TCPC.

♦ TCPCC: Timer/counter C control register [R/W] : 01B _H , default value [0000	\diamond	TCPCC: Timer/counter	C control register [R/W]	$: 01B_{H}$, default v	alue [0000]
--	------------	----------------------	--------------------------	-------------------------	-------------

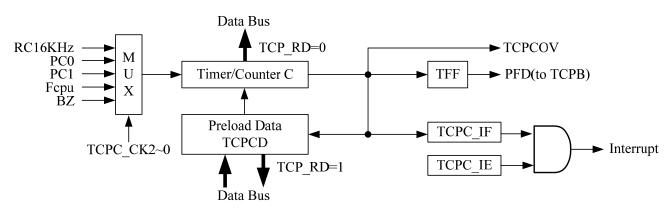
Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPC_CK2	TCPC_CK1	TCPC_CK0	TCPC_EN

Title					Version 3.2	Page 28 of 41	
	TTR01	1 (1K ROM	1 MCU)		version 5.2	20 01 41	
	Preliminary						
	Read/Write	R/W	R/W	R/W	R/W		
TCPC_EN : control enable timer/counter C counting							
	=0 : disable TCPC						
	=1 : enable TCPC						
	TCPC_CK2, TCPC_	_CK1, & TCPC_	_CK0 : select	t clock sourc	es for TCPC as	the following table:	

/	/		
TCPC_CK2	TCPC_CK1	TCPC_CK0	clock source
0	0	0	RC16KHz (OSCL)
0	0	1	PC0
0	1	0	PC1
0	1	1	Fcpu (CPU clock)
1	x	Х	BZ (from TCPB)

 \diamond TCPCDL: Low nibble register for data TCPCD [R/W] : 01C_H , default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPCD3	TCPCD2	TCPCD1	TCPCD0
Read/Write	R/W	R/W	R/W	R/W


TCPCD3~TCPCD0: low nibble for data buffer TCPCD.

 \diamond TCPCDH: High nibble register for data TCPCD [R/W] : 01D_H , default value [0000]

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	TCPCD7	TCPCD6	TCPCD5	TCPCD4
Read/Write	R/W	R/W	R/W	R/W

TCPD7~TCPD4: high nibble for data buffer TCPCD.

Figure 10: Timer/counter C (TCPC) circuit

Title		Page
TTR011 (1K ROM MCU)	Version 3.2	29 of 41

> Timer

When TCPC works as a timer in auto-reload mode, the user software sets the pre-load data buffer TCPCD for periodic timing generation. After initialization, the user software starts TCPC to count by setting TCPC_EN to "1", the TCPC cycle period is:

Tc = (selected clock cycle) * (TCPCD)

When writing data to the TCPCD, the data will also be loaded to counter if TCPC_EN is "0". The 1's complement value of TCPCD will be pre-loaded into counter TCPC as initial value. Writing TCPC_EN to "1" starts the count-up function. If in auto-reload mode, the timer reloads TCPCD to counter as TCPC up-counts and reaches the value of "FF_H" or 255. At the same time, the overflow TCPCOV and the interrupt request flag TCPC_IF will be active. If enabling the corresponding interrupt enable bit, the INT circuit will activate MCU interrupt service routine.

> PFD

The PFD signal comes from which divides the overflow TCPCOV by two. The TCPB can select PFD as the clock source. This provides a longer period of timer by combining TCPB and TCPC.

♦ PORT A , B , C

There are three ports can be used. All the pins of the ports are I/O pins. The pins of port A also are combined with the analog input pins of ADC. Writing the I/O definition registers (PAC, PBC, and PCC) can change them to be input or output pins.

In output mode, writing the data register (PA, PB, and PC) sets them to what values they output, and reading the data registers get what values are stored from register. In input mode, reading the data registers get what values are inputted from pins.

Writing the pull-high registers (PB_PH and PC_PH) turn-on or turn-off the pull-high of the input pins. The following table collects all the registers about these ports.

Address	Register	Bit3	Bit2	Bit1	Bit0	Default
005	DA	PA3	PA2	PA1	PA0	
00F _Н	PA	R/W	R/W	R/W	R/W	uuuu
010	חח	PB3	PB2	PB1	PB0	
010 _H	PB	R/W	R/W	R/W	R/W	uuuu

		Page
TTR011 (1K ROM MCU)	Version 3.2	30 of 41

Preliminary

011	DC	PC3	PC2	PC1	PC0	
011 _Н	н РС	R/W	R/W	R/W	R	uuuu
000	DAC	PAC3	PAC2	PAC1	PAC0	1111
00D _H	PAC	R/W	R/W	R/W	R/W	1111
015	PBC	PBC3	PBC2	PBC1	PBC0	- 1111
01E _H	ICH PDC	R/W	R/W	R/W	R/W	1111
01E	PCC	PCC3	PCC2	PCC1	PCC0	- 1111
01F _Н	PLL	R/W	R/W	R/W	R	
064	עם פט	PB3_PH	PB2_PH	PB1_PH	PB0_PH	0000
064 _н	54 _H PB_PH	R/W	R/W	R/W	R/W	0000
	PC3_PH	PC2_PH	PC1_PH	PC0_PH	0000	
065 _н	PC_PH	R/W	R/W	R/W	R/W	- 0000

- \diamond PA [00F_H] : Port A DATA register
- \diamond PAC[00D_H] : Port A I/O definition register
 - =1 : setting it to be input pin.
 - =0 : setting it to be output pin
- ♦ PB $[010_{H}]$: Port B DATA register
- \diamond PBC [01E_H] : Port B I/O definition register
 - =1 : setting it to be input pin
 - =0 : setting it to be output pin
- \diamond PB_PH [064_H] : Port B Pull_high control
 - =1 : enable pull_high resister when it is input pin
 - =0 : disable pull_high resister
- \diamond PC [011_H] : Port C DATA register
- \diamond PCC [01F_H] : Port C I/O definition register
 - =1 : setting to be input pin.
 - =0 : setting to be output pin
- \diamond PC_PH [065_H] : Port C Pull_high enable
 - =1 : enable pull_high resister when it is input pin
 - =0 : disable pull_high resister

TTR011 (1K ROM MCU)

Page

Preliminary

♦ 4-bit ADC

The following table collects all the registers about 4-bit ADC.

Address	Register	Bit3	Bit2	Bit1	Bit0	Default
014		ADEN	AD_CH2	AD_CH1	AD_CH0	0000
01A _H	ADC_CTL1	R/W	R/W	R/W	R/W	0000
050		AD0_TOP3	AD0_TOP2	AD0_TOP1	AD0_TOP0	
058 _Н	AD0_H	R/W	R/W	R/W	R/W	uuuu
	AD0_BOT3	AD0_BOT2	AD0_BOT1	AD0_BOT0		
059 _Н	AD0_L	R/W	R/W	R/W	R/W	uuuu
		AD1_TOP3	AD1_TOP2	AD1_TOP1	AD1_TOP0	
05А _Н	AD1_H	R/W	R/W	R/W	R/W	uuuu
		AD1_BOT3	AD1_BOT2	AD1_BOT1	AD1_BOT0	
05В _Н	AD1_L	R/W	R/W	R/W	R/W	uuuu
050		AD2_TOP3	AD2_TOP2	AD2_TOP1	AD2_TOP0	
05С _Н	AD2_H	R/W	R/W	R/W	R/W	uuuu
		AD2_BOT3	AD2_BOT2	AD2_BOT1	AD2_BOT0	
05D _Н	AD2_L	R/W	R/W	R/W	R/W	uuuu
05E _Н		AD3_TOP3	AD3_TOP2	AD3_TOP1	AD3_TOP0	
USLH	AD3_H	R/W	R/W	R/W	R/W	uuuu
OFE		AD3_BOT3	AD3_BOT2	AD3_BOT1	AD3_BOT0	
05F _Н	AD3_L	R/W	R/W	R/W	R/W	uuuu
060	ADC_D	AD_D3	AD_D2	AD_D1	AD_0	
060 _Н	ADC_D	R	R	R	R	uuuu
061 _H	ADC_PA	AD3/PA3	AD2/PA2	AD1/PA1	AD0/PA0	0000
		R/W	R/W	R/W	R/W	0000
0(2)		AD3WKEN	AD2WKEN	AD1WKEN	ADOWKEN	0000
062 _Н	AD_WKEN	R/W	R/W	R/W	R/W	0000
0(2		ADCK1	ADCK0		AD4/PB0	00.0
063 _Н	ADC_CTL2	R/W	R/W	R0	R/W	00-0
000		ADC _IE	TCPC_IE	TCPB_IE	TCPA_IE	0000
009 _Н	INTC1	R/W	R/W	R/W	R/W	0000
00.4		ADC_IF	TCPC_IF	TCPB_IF	TCPA_IF	0000
00A _H	INTF1	R/W0	R/W0	R/W0	R/W0	0000

TTR011 (1K ROM MCU)

Version 3.2

Page

77

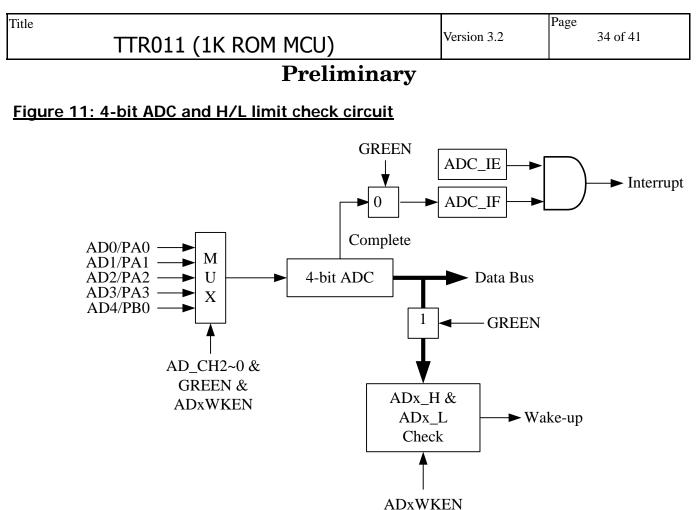
Preliminary

Bit Name	FUNCTION
ADC_IE	=0: Disable interrupt of the A/D conversion
	=1: Enable interrupt of the A/D conversion
ADC_IF	=0: No complete of A/D conversion
	=1: A/D conversion complete flag.
	After starting the A/D conversion, the user software can read this flag to
	see whether the conversion completes or not. This flag can only be
	cleared to "0" by writing "0". Writing "1" to flag bit will do nothing to it.
ADEN	=0 : Disable A/D
	=1 : Enable A/D.
AD_CH2,	Select A/D input channel as:
AD_CH1,	000 : select AD0
AD_CH0	001 : select AD1
	010 : select AD2
	011 : select AD3
	100 : select AD4
ADCK1,	Select ADC clock as:
ADCK0	00: select OSCH clock,
	01 : select OSCH/4 clock,
	10 : select OSCH/16 clock,
	11 : select OSCL clock.
AD0/PA0	=0 : pad option is I/O PORT PA0
	=1 : pad option is AD0 channel
AD1/PA1	=0 : pad option is I/O PORT PA1
	=1 : pad option is AD1 channel
AD2/PA2	=0 : pad option is I/O PORT PA2
	=1 : pad option is AD2 channel
AD3/PA3	=0 : pad option is I/O PORT PA3
	=1 : pad option is AD3 channel
AD4/PB0	=0 : pad option is I/O PORT PB0
	=1 : pad option is AD4 channel
AD_DATA3~0	"W" to trigger conversion start. "R" to read the result values of 4-bit A/D conversion.
	After enabling A/D, writing this register will start conversion. The write
	data will not affect these data bits. The user software reads the ADC_IF
	bit to monitor the complete of A/D conversion.
AD0_TOP3~0	AD0 high limit to be checked in GREEN mode.
	It wakes up MCU when above the limit. Their initial values are un-defined,

TONTEK DESIGN TECHNOLOGY LTD.

Title

TTR011 (1K ROM MCU)


Version 3.2

Page

77

Preliminary

Bit Name	FUNCTION
	so writing AD0_H before entering GREEN mode.
AD0 BOT3~0	AD0 low limit to be checked in GREEN mode.
_	It wakes up MCU when below the limit. Their initial values are un-defined,
	so writing AD0_L before entering GREEN mode.
AD1_TOP3~0	AD1 high limit to be checked in GREEN mode.
	It wakes up MCU when above the limit. Their initial values are un-defined,
	so writing AD1_H before entering GREEN mode.
AD1_BOT3~0	AD1 low limit to be checked in GREEN mode.
	It wakes up MCU when below the limit. Their initial values are un-defined,
	so writing AD1_L before entering GREEN mode.
AD2_TOP3~0	AD2 high limit to be checked in GREEN mode.
	It wakes up MCU when above the limit. Their initial values are un-defined,
	so writing AD2_H before entering GREEN mode.
AD2_BOT3~0	AD2 low limit to be checked in GREEN mode.
	It wakes up MCU when below the limit. Their initial values are un-defined,
	so writing AD2_L before entering GREEN mode.
AD3_TOP3~0	AD3 high limit to be checked in GREEN mode. It wakes up MCU when above the limit. Their initial values are un-defined,
	so writing AD3_H before entering GREEN mode.
AD3 BOT3~0	AD3 low limit to be checked in GREEN mode.
105_0015 0	It wakes up MCU when below the limit. Their initial values are un-defined,
	so writing AD3_L before entering GREEN mode.
ADOWKEN	=0 : disable AD0 check and wake-up in GREEN mode
	=1 : enable AD0 check and wake-up in GREEN mode.
	In GREEN mode, AD0 will be checked one time in one of the continuous 4
	overflows of TCPB. If this enable bit is $1^{\prime\prime}$, the A/D will converse the input
	signal of AD0 channel first. Then the conversion value will be compared
	with AD0_H and AD0_L register. If the value is above AD0_TOP3~0 or
	below AD0_BOT3~0, the wake-up takes place. It will do nothing at the
	coming overflow when the AD0WKEN bit is "0".
AD1WKEN	=0 : disable AD1 check and wake-up in GREEN mode
	=1 : enable AD1 check and wake-up in GREEN mode.
	It does the similar operation as that at AD0WKEN.
AD2WKEN	=0 : disable AD2 check and wake-up in GREEN mode
	=1 : enable AD2 check and wake-up in GREEN mode.
	It does the similar operation as that at AD0WKEN.
AD3WKEN	=0 : disable AD3 check and wake-up in GREEN mode
	=1 : enable AD3 check and wake-up in GREEN mode.
	It does the similar operation as that at AD0WKEN.

A/D conversion

The user software is used to set the I/O definition after power-on. In the power-on reset routine, it can set the ADC_PA register for AD3~0 channels, and the ADC_CTL2 for AD4 channel. If the user software wants to do A/D conversion for some channel, it need to enable ADC by writing "1" to the ADEN bit and the channel number to the AD_CH2~0 bits in the ADC_CTL1 register firstly. Secondly, it chooses the proper clock for A/D conversion at the ADCK1~0 bits of ADC_CTL2 register. If the ADCK1~0 bit is "11", the OSCL clock is used for conversion. The conversion time is:

T_{OSCL_CONV} = (period of RC16KHz) * 6

If the ADCK1 \sim 0 bit is other, the divided clock of OSCH is used for conversion. The conversion time is:

T_{OSCH_CONV} = (period of selected ADC clock) * 32

Next, it clear the ADC_IF bit in the INTF1 register. Now it writes any value to the ADC_D register to start the conversion. It will monitor the conversion from the state of the ADC_IF bit.

TOWIER DE	SIGN TECHNOLOGY LID.		
Title		Version 3.2	Page 35 of 41
I	TR011 (1K ROM MCU)		
	Preliminary		
It means the	conversion complete when the ADC_IF bit ch	nanges to ``1". T	ne result of the A/D
conversion wi	ll be found in the ADC_D register. The follow	ing is a simple <i>i</i>	ADC flow:
Step 1:	Select A/D input pins –		
	Set ADC_PA register and AD4/PB0 bit in A	DC_CTL2 regist	er
Step 2:	Select A/D channel and enable –		
	Set ADEN = 1, AD_CH2 \sim 0 = wanted char	nnel in ADC_CTL	1 register
Step 3:	Select A/D input clock –		
	Set ADCK1~0 in ADC_CTL2 register		
Step 4:	Clear ADC interrupt request flag –		
	Set ADC_IF = 0 in INTF1 register		
Step 5:	Start conversion –		
	Write F_H to ADC_D register		
Step 6:	Wait conversion complete –		
	Check if ADC_IF = 1 in INTF1 register		
Step 7:	Read the result value of conversion –		
	Read ADC_D register		
Step 8:	Disable A/D –		
	Set ADEN = 0 in ADC_CTL1 register		
Step 9:	Wait the next conversion, then go to Step	2	

If interrupt service is considered, it can set the ADC_IE bit in the INTC1 register before conversion. Then the conversion complete will set the ADC_IF bit automatically. The user software can check this bit in the interrupt service routine. The following is a simple ADC flow with interrupt:

Step 1:	Select A/D input pins –
	Set ADC_PA register and AD4/PB0 bit in ADC_CTL2 register
Step 2:	Select A/D channel and enable –
	Set ADEN = 1, AD_CH2 \sim 0 = wanted channel in ADC_CTL1 register
Step 3:	Select A/D input clock –
	Set ADCK1~0 in ADC_CTL2 register
Step 4:	Clear ADC interrupt request flag –
	Set ADC_IF = 0 in INTF1 register
Step 5:	Enable ADC interrupt –
	Set ADC_IE = 1 in INTC1 register
Step 6:	Start conversion –

77

-		Version 3.2	Page 36 of 41
	TR011 (1K ROM MCU)	VOISION 3.2	50 01 11
	Prelimina	ary	
	Write F_H to ADC_D register		
Step 7:	Wait interrupt from conversion comp	olete –	
Step 8:	Check ADC interrupt request flag in	interrupt routine –	
	Read the ADC_IF bit in INTF1 regist	ter	
Step 9:	Check ADC_IF = 0? in interrupt rout	tine	
	Yes, go to Step 10		
	No, does the proper routine then go	o to Step 7	
Step 10:	Read the result value of conversion i	in interrupt routine –	
	Read ADC_D register		
Step 11:	Disable A/D and return from interrup	ot routine –	
	Set ADEN = 0 in ADC_CTL1 register	r	
Step 12:	Wait the next conversion, then go to	Step 2	

Sampling channel voltage takes place at the first 2 or 16 clocks of the A/D conversion in according to the selected ADC clock. It may take more time to sample enough voltage for the critical application. The user can presume there are a 10pF capacitor and a 10Kohm resistor in internal of the A/D input channel. The settling time of sampling can be computed by adding the external loading to them.

ADC check procedure in GREEN mode

In GREEN mode, the MCU will generate a ADC check procedure when the timer/counter B overflows. The CPU will not be waked up by this overflow. The ADC check procedure will check only one channel at each overflow. The next overflow will select the next channel to be checked. The 4 channels (AD0~3) will be checked in order. If the ADxWKEN bit is "0", it will ignore the check procedure in this overflow. The ADEN bit has no effect on ADC check procedure.

After A/D converse the input signal of the selected channel, the conversion value will be compared with ADx_H and ADx_L register. If the value is above ADx_TOP3~0 or below ADx_BOT3~0, the wake-up takes place. It will do nothing at this overflow when the ADxWKEN bit is "0". Only the OSCL clock is active in GREEN mode. It is used all the time in the ADC check procedure in spite of what the ADCK1~0 are. The conversion time in GREEN mode is:

T_{GREEN_CONV} = (period of RC16KHz) * 6

No matter what the ADC_IE bit is, the A/D interrupt will be ignored in GREEN mode. The interrupt request flag ADC_IF is also ignored in GREEN mode. Sampling channel voltage takes

TTR011 (1K ROM MCU)

Version 3.2

Page

Preliminary

place at the first 2 clocks of the A/D conversion. The following is a simple ADC check flow for GREEN mode:

Step 1:	Select A/D input pins –			
	Set ADC_PA register			
Step 2:	Step 2: Enable wanted A/D wake-up channel –			
	Set AD_WKEN register			
Step 3:	Set the period time in TCPB for ADC check –			
	Set TCPBDH and TCPBDL register			
Step 4:	Set the overflow count (period time) in TB1 for CPU wake-up –			
	Set the TB1~0 bits in TBC/BZC register			
Step 5:	Select High/Low limit for the wanted channel –			
	Set ADx_H and ADx_L register			
Step 6:	Enter GREEN mode –			
	Set $GREEN = 1$ in PS register			
Step 7:	Wait ADC check from TCPB overflow by hardware –			
	if wake-up from TB1 overflow, go to Step 15 –			
Step 8:	,			
	AD0WKEN = 0? Yes, go to Step 9; No, do conversion and compare			
	if ADC_D > AD0_H or ADC_D < AD0_L, go to Step 15			
Step 9:	Wait ADC check from TCPB overflow by hardware –			
	if wake-up from TB1 overflow, go to Step 15 –			
Step 10	AD1 conversion and compare AD1_H and AD1_L by hardware –			
	AD1WKEN = 0? Yes, go to Step 11; No, do conversion and compare			
a :	if $ADC_D > AD1_H$ or $ADC_D < AD1_L$, go to Step 15			
Step 11	Wait ADC check from TCPB overflow by hardware –			
C 1 A C	if wake-up from TB1 overflow, go to Step 15 –			
Step 12	AD2 conversion and compare AD2_H and AD2_L by hardware –			
	AD2WKEN = 0? Yes, go to Step 13; No, do conversion and compare			
Chain 12	if ADC_D > AD2_H or ADC_D < AD2_L, go to Step 15			
Step 13	Wait ADC check from TCPB overflow by hardware –			
Chain 14	if wake-up from TB1 overflow, go to Step 15 –			
Step 14	AD3 conversion and compare AD3_H and AD3_L by hardware –			
	AD3WKEN = 0? Yes, go to Step 7; No, do conversion and compare if ADC $D > AD3$ H or ADC $D < AD3$ L go to Step 15			
	if ADC_D > AD3_H or ADC_D < AD3_L, go to Step 15 go to Step 7			
	go to Step 7			

Title			Page
TTR011 (1K ROM MCL	J)	Version 3.2	38 of 41

```
Step 15: Wake-up and check wake-up flag –
```

Read the AD/PA WK and TB WK bits in WK FG register

Step 16: Check AD/PA WK = 1? Yes, does the proper routine for ADC wake-up

Step 17: Check TB WK = 1? Yes, does the proper routine for CPU wake-up

Step 18: Wait enter GREEN mode, then go to Step 2

§ Mask Option Table:

```
MOPTION 1: Mask option register , default value [00-0]
∻
```

Register	Bit3	Bit2	Bit1	Bit0
Bit Name	LVD_opt1	LVD_opt0		EXT_R/
				internal RC

MOPTION 2: Mask option register , default value [0000] ∻

Bit Name INT3_edge INT2_edge INT1_edge INT0_edge	Register	Bit7	Bit6	Bit5	Bit4
	Bit Name	INT3_edge	INT2_edge	INT1_edge	INT0_edge

Bit0(EXT_R/internal RC) :

=0: internal 910Khz RC oscillator

=1 : external R oscillator.

Bit3:bit2 (LVD_opt1:LVD_opt0) : define LVD voltage

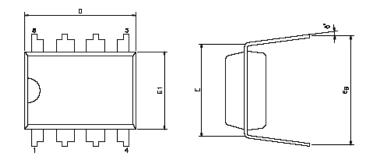
2.0V (+/-8%) 0 0 = 0 2.2V (+/- 8%) 1 = 0 3.3V (+/- 8%) 1 = 1 1 4.5V (+/-8%) =

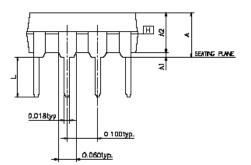
Bit4 (INT0_edge) :

=0: PA0/INT0 falling edge trigger =1 PA0/INT0 rising edge trigger Bit5 (INT1_edge) : =0 : PA1/INT1 falling edge trigger =1 : PA1/INT1 rising edge trigger Bit6 (INT2_edge) : =0: PC0/INT2 falling edge trigger =1 : PC0/INT2 rising edge trigger Bit7 (INT3_edge) : =0 : PC1/INT3 falling edge trigger =1 : PC1/INT3 rising edge trigger

TTR011 (1K ROM MCU)

Version 3.2


Page


Preliminary

§ Package Information

DIP 8 pins

Title

SYMBOLS	MIN.	NOR.	MAX.
A	_	_	D.210
A1	0.015	-	-
A2	0.125	0.130	0.135
D	0.355	0.365	0.400
E	0.300 BSC.		
E1	0.245	0.250	0.255
L	0.115	D.130	D.150
es	0.335	0.355	0.375
¢°	0	7	15

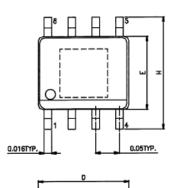
UNIT : INCH

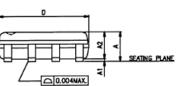
NOTES: 1.JEDEC DUTLINE : MS-001 BA

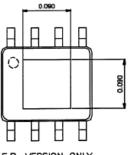
2. "D", "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH.
 3.eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

UNCONSTRAINED. 4. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION. 5. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM. 6. DATUM PLANE [] COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

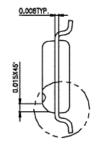
TTR011 (1K ROM MCU)

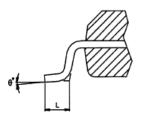

Version 3.2


Page

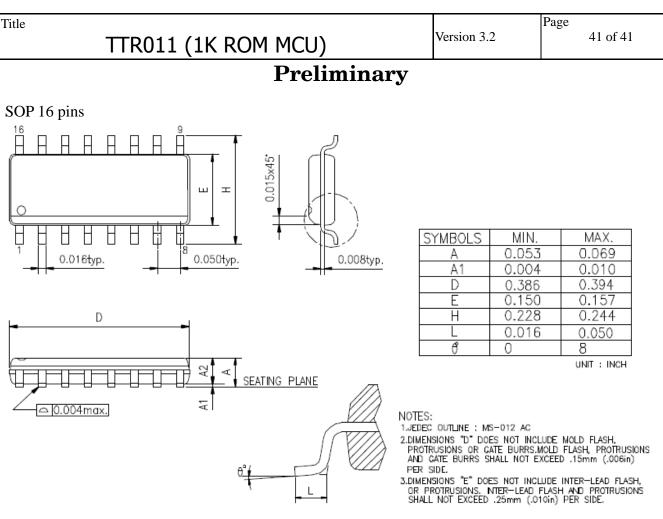

Preliminary

SOP 8 pins


Title



E.P. VERSION ONLY



SYMBOLS	MIN.	MAX.
A	0.053	0.069
A1	0.004	0.010
A2	-	0.059
D	0.189	0.196
E	0.150	0.157
Н	0.228	0.244
L	0.016	0.050
θ°	0	8
		UNIT : INCH

NOTES:

- INCIES: 1.JEDEC OUTLINE : MS-012 AA / E.P. VERSION : N/A 2.DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR CATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .15mm (.006in) PER SIDE.
- 3.DIMENSIONS "E" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25mm (.010in) PER SIDE.

§ Modified Record:

- 1. V 0.46 →V0.47, Add top mark data. 2011/5/24
- 2. V 0.47 →V0.48, 2011/6/7

Page 25 : BZ frequency = (selected clock frequency) / (TCPDH+TCPDL)/2 → BZ frequency = (selected clock frequency) / (TCPDH+TCPDL)

Page 38 : add LVD tolerance (+/- 8%)

- 3. Add two NOPs instructions must follow STOP and GREEN mode. 2013/07/01
- 4. Modify Mod_RC16K register increment will slow down OSCL. 2013/07/10
- 5. Power-on default is low speed mode. 2013/07/10
- 6. Operation Voltage 2.0V ~5.0V. 2013/07/10
- 7. Two kinds of package SOP8-FO8/SOP16-HOB. 2013/07/10
- 8. Operation Voltage 2.0V ~5.5V. 2015/09/04