

45 W + 45 W dual BTL class-D audio amplifier

PowerSSO36 with exposed pad down

Features

- Wide-range single-supply operation (7 - 26 V)
- · Possible output configurations:
 - 2 x PBTL
 - 1 x Parallel BTL
- BTL output capabilities (V_{CC} = 22 V):
 - 44 W + 44 W, 4 Ω, THD 1%
 - 57 W + 57 W, 4 Ω, THD 10%
 - 32 W + 32 W, 6 Ω, THD 1%
 - 41 W + 41 W, 6 Ω, THD 10%
 - 25 W + 25 W, 8 Ω, THD 1%
 - 32 W + 32 W, 8 Ω, THD 10%
- Parallel BTL output capabilities (V_{CC} = 22 V):
 - 70 W, 3 Ω, THD 1%
 - 90 W, 3 Ω, THD 10%
- · High efficiency
- Four selectable, fixed-gain settings of nominally 20.8 dB, 26.8 dB, 30 dB and 32.8 dB
- Differential inputs minimize common-mode noise
- Standby, mute and play operating modes
- Short-circuit protection
- Output power limited by P_{LIMIT} function
- · Detection of shorted output pins during startup
- Thermal overload protection
- ECOPACK® environmentally friendly package

Product status

TDA7492PE

Product summary					
Order code TDA7492PE					
Temperature range	-40 to +85 °C				
Package	PowerSSO-36 EPD				
Packing Tape and reel					

Description

The TDA7492PE is a dual BTL class-D audio amplifier with single power supply designed for home audio applications.

The device is housed in a 36-pin PowerSSO package with exposed pad down (EPD) to facilitate power dissipation through a properly designed PCB area underneath the TDA7492PE.

1 Device block diagram

Figure 2. Internal block diagram (showing one channel only) shows the block diagram of one of the two identical channels of the TDA7492PE.

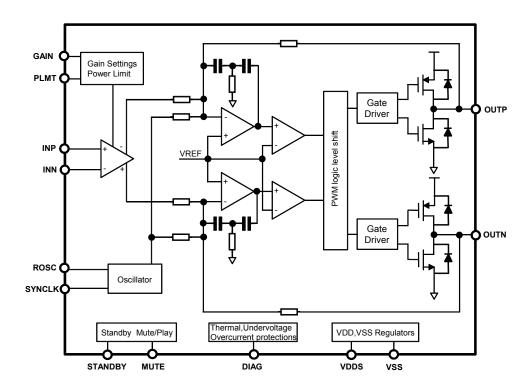
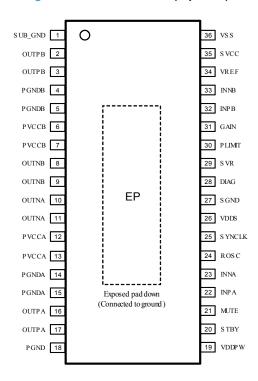


Figure 1. Internal block diagram (showing one channel only)


DS10652 - Rev 3 page 2/19

2 Pin description

2.1 Pinout

Figure 2. Pin connections (top view)

DS10652 - Rev 3 page 3/19

2.2 Pin list

Table 1. Pin description list

Number	Name	Туре	Description
1	SUB_GND	PWR	Connect to the frame
2, 3	OUTPB	0	Positive PWM for right channel
4, 5	PGNDB	PWR	Power stage ground for right channel
6, 7	PVCCB	PWR	Power supply for right channel
8, 9	OUTNB	0	Negative PWM output for right channel
10, 11	OUTNA	0	Negative PWM output for left channel
12, 13	PVCCA	PWR	Power supply for left channel
14, 15	PGNDA	PWR	Power stage ground for left channel
16, 17	OUTPA	0	Positive PWM output for left channel
18	PGND	PWR	Power stage ground
19	VDDPW	0	3.3 V (nominal) regulator output referred to ground for power stage
20	STBY	I	Standby mode control
21	MUTE	I	Mute mode control
22	INPA	I	Positive differential input of left channel
23	INNA	I	Negative differential input of left channel
24	ROSC	0	Master oscillator frequency-setting pin
25	SYNCLK	I/O	Clock in/out for external oscillator
26	VDDS	0	3.3 V (nominal) regulator output referred to ground for signal blocks
27	SGND	PWR	Signal ground
28	DIAG	0	Open-drain diagnostic output
29	SVR	0	Supply voltage rejection
30	PLIMIT	I	Output voltage level setting
31	GAIN	I	Gain setting input
32	INPB	I	Positive differential input of right channel
33	INNB	I	Negative differential input of right channel
34	VREF	0	Half VDDS (nominal) referred to ground
35	svcc	PWR	Signal power supply
36	VSS	0	3.3 V (nominal) regulator output referred to power supply
-	EP	-	Exposed pad for heatsink, to be connected to GND

DS10652 - Rev 3 page 4/19

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage for pins PVCCA, PVCCB, SVCC	30	V
VI	Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB, GAIN, MODE	-0.3 to +4.6	V
Tj	Operating junction temperature	-40 to +150	°C
T _{op}	Operating ambient temperature	-40 to +85	°C
T _{stg}	Storage temperature	-40 to +150	°C

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Min.	Тур.	Max.	Unit
R _{th j-case}	Thermal resistance, junction-to-case	-	2.98		°C/W
R _{th j-amb}	Thermal resistance, junction-to-ambient		24		°C/W

DS10652 - Rev 3 page 5/19

3.3 Electrical specifications

Unless otherwise stated, the results in Table 1 below are given for the conditions: V_{CC} = 22 V, R_L = 6 Ω , R_{OSC} = R3 = 33 k Ω , f = 1 kHz, G_V = 20.8 dB and Tamb = 25 °C.

Table 4. Electrical specifications

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{CC}	Supply voltage for pins PVCCA, PVCCB, SVCC	-		-	26	V
Iq	Total quiescent current	No LC filter, no load	-	40		mA
I _{qSTBY}	Quiescent current in standby	-	-	1	-	μΑ
Vos	Output offset voltage	Vi = 0, no load		20		mV
I _{OCP}	Overcurrent protection threshold to switch off the device		9	10	13	А
Tj	Junction temperature at thermal shutdown	-	140	150	160	°C
R _i	Input resistance	Differential input		60	-	kΩ
D	Devian transistan an masistan as	High side	-	0.2	-	
R_{dsON}	Power transistor on-resistance	Low side	-	0.2	-	Ω
		GAIN < 0.25*Vdd		20.8	-	
0		0.25*Vdd < GAIN < 0.5*Vdd	-	26.8	-	dB
G_V	Closed-loop gain	0.5*Vdd < GAIN < 0.75*Vdd	-	30	-	
		GAIN1 > 0.75*Vdd	-	32.8	-	
ΔG_V	Gain matching	-		-	±1	dB
СТ	Cross talk	f = 1 kHz, P _O = 1 W		70	-	dB
SVRR	Supply voltage rejection ratio	fr = 100 Hz, Vr = 0.5 Vpp, $C_{SVR} = 10 \mu F$	-	60	-	dB
T _r , T _f	Rise and fall times	-	-	24	40	ns
f _{SW}	Switching frequency	Internal oscillator		500		kHz
f _{SWR}	Output switching frequency range	With internal oscillator by changing Rosc ⁽¹⁾	450	-	550	kHz
V _{inH}	Digital input high (H)		2.0	-	-	.,
V _{inL}	Digital input low (L)	-	-	-	0.8	V
		STBY < 0.5 V Mute = X	Standby		1	
Function mode	Standby, Mute, Play	STBY > 2.5 V Mute < 0.8 V		Mu	ite	
		STBY > 2.5 V Mute > 2.5 V		Pla	ау	
A _{MUTE}	Mute attenuation	V _{MUTE} = 1 V	60	80	-	dB

^{1.} $f_{SW} = 10^6 / [(R_{OSC} * 12 + 110) * 4] \text{ kHz}$, $f_{SYNCLK} = 2 * f_{SW}$ (where R_{OSC} is in $k\Omega$. and f_{SW} in kHz) with Rosc = 33 $k\Omega$.

DS10652 - Rev 3 page 6/19

3.4 Stereo BTL application

All specifications are for V_{CC} = 22 V, Rosc = 33 k Ω , f = 1 kHz, Tamb = 25 °C, unless otherwise specified.

Table 5. Stereo BTL application

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		R _L = 6 Ω, THD = 10%	-	41	-	
		R _L = 6 Ω, THD = 1%	-	32	-	
Po	Output power	$R_L = 6 \Omega$, THD = 10%,		27		W
10	Output power	V _{CC} = 18 V	-	21	-	VV
		R _L = 6 Ω, THD = 1%,		21		
		V _{CC} = 18 V	-	21	-	
THD	Total harmonic distortion	P _o = 1 W, fin = 1 kHz	-	0.04	-	%
VN	Total output noise	Inputs shorted and connected to GND, A Curve, G _V = 20.8 dB	-	150	-	μV

3.5 Parallel BTL (mono) application

All specifications are for V_{CC} = 22 V, Rosc = 33 k Ω , f = 1 kHz, Tamb = 25 °C, INPB, INNB connected to VDDS, unless otherwise specified.

Table 6. Stereo BTL (mono) application

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		R _L = 3 Ω, THD = 10%	-	90	-	
		R _L = 3 Ω, THD = 1%	-	70	-	
Po	Output power	$R_L = 3 \Omega$, THD = 10%,	_	53	_	w
		Vcc = 18 V				
		$R_L = 3 \Omega$, THD = 1%,	_	41	_	
		Vcc = 18 V		71		
THD	Total harmonic distortion	P _o = 1 W, fin = 1 kHz	-	0.04	-	%
VN	Total output noise	Inputs shorted and connected to GND, A Curve, G _V = 20.8 dB	-	150	-	μV

DS10652 - Rev 3 page 7/19

4 Application information

4.1 Gain setting

The four gain settings of the TDA7492PE are set by GAIN (pin 31). Internally, gain is set by changing the feedback resistors of the amplifier. The gain setting pins can be controlled by standard logic drivers.

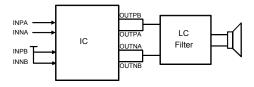

Voltage on GAIN pinTotal gainApplication recommendations $V_{GAIN} < 0.25*VDDS$ 20.8 dBGAIN pin connected to SGND $0.25*VDDS < V_{GAIN} < 0.5*VDDS$ 26.8 dBExternal resistor divider < 100 k</td> $0.5*VDDS < V_{GAIN} < 0.75*VDDS$ 30 dBExternal resistor divider < 100 k</td> $V_{GAIN} > 0.75*VDDS$ 32.8 dBGAIN pin connected to VDDS

Table 7. Gain settings

4.2 Stereo and mono applications

The TDA7492PE can be used in stereo BTL or in mono BTL configuration. When the input pins, INPB and INNB of the right channel are directly shorted to VDDS (without input capacitors) the device is in mono configuration as shown in Figure 4. Mono BTL settings.

Figure 3. Mono BTL settings

4.3 Smart protections

4.3.1 Overcurrent protection (OCP)

If the overcurrent protection threshold is reached, the power stage will be shut down immediately. The device will recover automatically when the fault is removed.

Table 8. Overcurrent protection

	l (shutdown)
High-side (A)	11.2
Low-side (A)	10.0

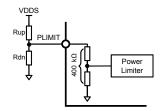
The thresholds in mute mode are reduced to about 1/2 and two typical thresholds are as follows.

DS10652 - Rev 3 page 8/19

Table 9. Overcurrent protection (mute mode)

	l (shutdown)
High-side (A)	6.2
Low-side (A)	5.9

4.3.2 Thermal protection


When internal die temperature exceeds 140 °C, the device enters into Mute by pulling the MUTE pin low first. When internal die temperature exceeds 150 °C, the device directly shuts down the power stage. The TDA7492PE automatically recovers when the temperature become lower than the threshold.

4.3.3 Power limit

A built-in power limit is used to limit the output voltage level below the supply rail by limiting the duty cycle. The limit level is set through the voltage at PLIMIT (pin 30). The pin voltage is set by the following equation:

$$VPLIMIT = V_{DD} \left[\frac{(Rdn//400k)}{(Rdn//400k + Rup)} \right]$$
 (1)

Figure 4. Recommended power limit pin connections

It is recommended that external resistors are less than 40 k Ω if a voltage divider is used as shown in Figure 5. Recommended power limit pin connections. The relationship of the maximum duty cycle (Dmax) and the voltage at P_{LIMIT} is:

$$Dmax = \frac{\left\{8.8 \times \frac{VPLIMIT}{V_{cc} - \frac{2 \times V_{cc} \times Rs}{Rload \times 2 \times Rs}} + 1\right\}}{2}$$
 (2)

Where V_{CC} is the power supply voltage, VPLIMIT is the voltage applied at the P_{LIMIT} pin, Rs is the series resistance including Rdson of the power transistor, output filter resistance and bonding wire resistance. Rload is the load resistance.

An example of maximum effective control voltage at P_{LIMIT} vs. power supply and load resistance is shown in Table 10. Max. effective voltage of P_{LIMIT} pin vs. power supply and load.

Table 10. Max. effective voltage of PLIMIT pin vs. power supply and load

R _{load}	Power supply				
	7 V	13 V	24 V		
4 Ω	0.71 V	1.32 V	2.44 V		
6 Ω	0.74 V	1.37 V	2.53 V		
8 Ω	0.75 V	1.39 V	2.57 V		

DS10652 - Rev 3 page 9/19

4.4 Mode selection

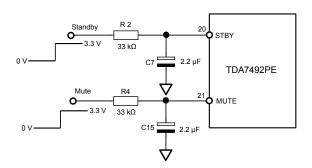
The three operating modes of the TDA7492PE are set by two inputs: STBY (pin 20) and MUTE (pin 21).

- Standby mode: all circuits are turned off, very low current consumption.
- Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty cycle
- Play mode: the amplifiers are active.

The protection functions of the TDA7492PE are implemented by pulling down the voltages of the STBY and MUTE inputs shown in Figure 6. Standby and mute circuits. The input current of the corresponding pins must be limited to $200 \, \mu A$.

 Mode
 STBY
 MUTE

 Standby
 L(1)
 X (do not care)


 Mute
 H
 L

 Play
 H
 H

Table 11. Mode settings

^{1.} Drive levels defined in Table 4. Electrical specifications.

DS10652 - Rev 3 page 10/19

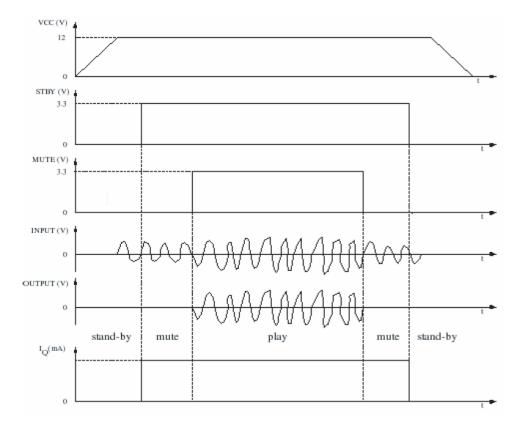


Figure 6. Turn-on/off sequence for minimizing speaker "pop"

DS10652 - Rev 3 page 11/19

5 Schematic diagram

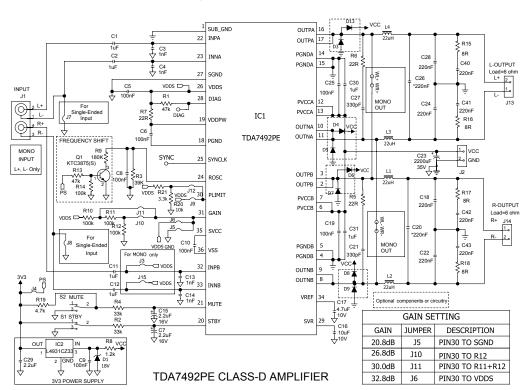


Figure 7. Application circuit

Table 12. BTL configuration

Load impedance	L4, L3, L2, L1	C26, C20	C28, C24, C22, C18	R15, R16, R17, R18	C40, C41, C42, C43
4 Ω	15 µh	1 μF	220 nF	8 Ω	220 nF
6 Ω	22 µh	680 nF	220 nF	8 Ω	220 nF
8 Ω	22 µh	470 nF	220 nF	8 Ω	220 nF

DS10652 - Rev 3 page 12/19

6 Characterization curves

Unless otherwise stated, measurements were made under the following conditions: V_{CC} = 22 V, RI = 6 Ω , f = 1 kHz, Gv = 20.8 dB, R_{OSC} = 33 k Ω , Gain = 20.8 dB and T_{amb} = 25 °C.

Note: Maximum output power must be derated according to case temperature.

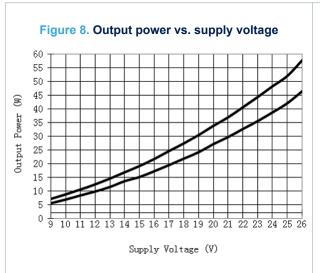
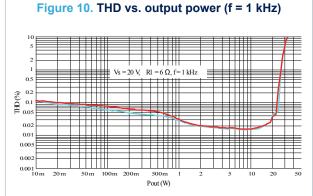
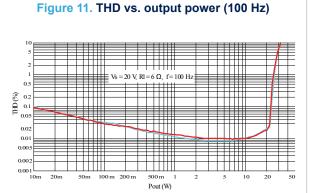
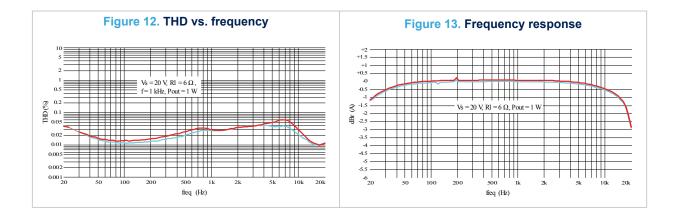




Figure 9. Efficiency vs. output power

90
80
70
60
Vs = 20 V
RI = 6 ohm
f = 1 kHz


10
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Pout per channel (W)

DS10652 - Rev 3 page 13/19

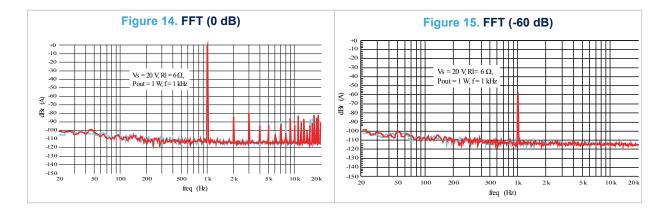
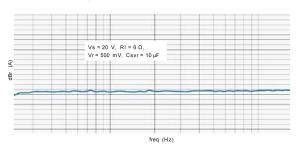
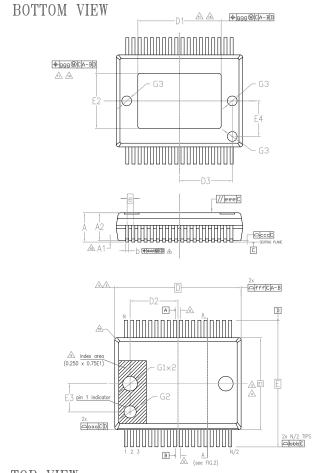



Figure 16. PSRR parameter

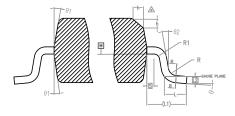
DS10652 - Rev 3 page 14/19

7 Package information

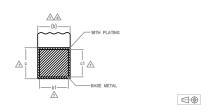

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS10652 - Rev 3 page 15/19

7.1 PowerSSO36 EPD package information


Figure 17. PowerSSO-36 EPD package outline

TOP VIEW


SECTION A-A

NOT TO SCALE

SECTION B-B

NOT TO SCALE

7587131_I

DS10652 - Rev 3 page 16/19

Table 13. PowerSSO-36 EPD package mechanical data

		Dimensions in mn	1	Dimensions in inches		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
θ	0°	-	8°	0°	-	8°
θ1	5°	-	10°	5°	-	10°
θ2	0°	-	-	0°	-	-
Α	2.15	-	2.45	0.085	-	0.096
A1	0.00	-	0.10	0.00	-	0.004
A2	2.15	-	2.35	0.085	-	0.093
b	0.18	-	0.32	0.007	-	0.013
b1	0.13	0.25	0.30	0.005	0.010	0.012
С	0.23	-	0.32	0.009	-	0.013
c1	0.20	0.20	0.30	0.008	0.008	0.012
D		10.30 BSC			0.406 BSC	
D1	6.50	-	7.10	0.256	-	0.280
D2	-	3.65	-	-	0.144	-
D3	-	4.30	-	-	0.169	-
е		0.50 BSC			0.020 BSC	
Е	10.30 BSC				0.406 BSC	
E1	7.50 BSC				0.295 BSC	
E2	4.10	-	4.70	0.161	-	0.185
E3	-	2.30	-	-	0.091	-
E4	-	2.90	-	-	0.114	-
G1	-	1.20	-	-	0.047	-
G2	-	1.00	-	-	0.039	-
G3	-	0.80	-	-	0.032	-
h	0.30	-	0.40	0.012	-	0.016
L	0.55	0.70	0.85	0.022	0.028	0.033
L1		1.40 REF			0.055 REF	
L2		0.25 BSC			0.010 BSC	
N			3	36		
R	0.30	-	-	0.012	-	-
R1	0.20	-	-	0.008	-	-
S	0.25	-	-	0.010	-	-

DS10652 - Rev 3 page 17/19

Revision history

Table 14. Document revision history

Date	Revision	Changes
14-Nov-2014	1	Initial release
		Updated minimum voltage to 7 V throughout datasheet
24-Feb-2017	2	Updated V _{OS} and T _r , T _f in Table 4. Electrical specifications.
		Updated Section 7.1 PowerSSO-36 EPD package information.
21-Sep-2020	3	Updated order code table.

DS10652 - Rev 3 page 18/19

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS10652 - Rev 3 page 19/19