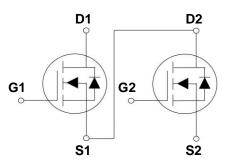


DTQ33A40 www.din-tek.jp

A.Dual N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A) ^a	Q _g (TYP.)			
30	0.008 at V _{GS} = 10V	26	15 nC			

DFN3x3 Asymmetric Dual Pin Configuration



FEATURES

- DT-Trench Power MOSFET
- 100 % R_g and UIS tested
- ESD Protection Diode Embedded

APPLICATIONS

- MB / VGA / Vcore
- POLBuckApplications

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	Q1	Q2	Units
V _{DS}	Drain-Source Voltage	30	30	V
V _{GS}	Gate-Source Voltage	±20	±20	V
	Drain Current – Continuous (T _C =25°C)	26	26	А
1-	Drain Current – Continuous (Tc=100°C)	18.7	18.7	А
lo	Drain Current – Continuous (T _A =25°C)	13.9	13.9	А
	Drain Current – Continuous (T _A =100°C)	8.9	8.9	А
IDM	Drain Current – Pulsed ¹	100	100	А
EAS	Single Pulse Avalanche Energy ²	20	20	mJ
IAS	Single Pulse Avalanche Current ²	20	20	А
D-	Power Dissipation ($T_c=25^{\circ}C$)	27	27	W
PD	Power Dissipation – Derate above 25°C	0.01	0.01	W/°C
TSTG	Storage Temperature Range	-55 t	-55 to 150	
TJ	Operating Junction Temperature Range	-55 t	-55 to 150	

Electrical Characteristics (TJ=25 °C, unless otherwise noted)

Sym	Symbol Parameter		Тур.	Max.	Unit
Reja	Q1	Thermal Desistance, Junction to embient		61	°C/W
R _{0JA}	Q2	Thermal Resistance Junction to ambient		61	°C/W
R _{θJC}	Q1	Thermal Desistence, lunction to Open		4.5	°C/W
Rejc	Q2	Thermal Resistance Junction to Case		4.5	°C/W

Absolute Maximum Ratings Tc=25°C unless otherwise noted

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
	Drain-Source Breakdown Voltage		Q1	30			V
BV _{DSS}		V _{GS} =0V , I _D =250uA	Q2	30			V
			Q1		0.04		V/°C
	BV _{DSS} Temperature Coefficient	Reference to $25^{\circ}C$, I _D =1mA	Q2		0.04		V/°C
		V _{DS} =30V , V _{GS} =0V , T _J =25°C	Q1			1	uA
IDSS	Drain-Source Leakage Current		Q2			1	uA
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =125°C	Q1			10	uA
		VDS=24V, VGS=0V, IJ=125C	Q2			10	uA
lass	Cate Source Leakage Current	V _{GS=} ±20V , V _{DS} =0V	Q1			±100	nA
I _{GSS}	Gate-Source Leakage Current	$VGS=\pm 20V$, $VDS=0V$	Q2			±100	nA
		V_{GS} =10V , I_{D} =10A	Q1		8.0	10.5	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance ³	$V_{\text{GS}}{=}10V$, $I_{\text{D}}{=}10A$	Q2		8.0	10.5	mΩ
TOS(ON)	Static Drain-Source On-Resistance	V_{GS} =4.5V , I_{D} =5A	Q1		11	14	mΩ
		V_{GS} =4.5V , I_{D} =5A	Q2		11	14	mΩ
	Gate Threshold Voltage	−V _{GS} =V _{DS} , I _D =250uA	Q1	1.2	1.6	2.5	V
V _{GS(th)}			Q2	1.2	1.6	2.5	V
	V _{GS(th)} Temperature Coefficient		Q1		-4		mV/°
$ riangle V_{GS(th)}$			Q2		-4		mV/°
afa		Vds=5V , Id=5A	Q1		12		S
gfs	Forward Transconductance	V _{DS} =5V , I _D =5A	Q2		12		S
Dynamic	Characteristics						
	T () O () O () O ()		Q1		15	32	
Qg	Total Gate Charge ^{3,4}		Q2		15	32	-
0	Gate-Source Charge ^{3,4}		Q1		2.2	5	
Q_gs		V_{DS} =15V , V_{GS} =10V , I_{D} =5A			2.2	5	nC
0	Gate-Drain Charge ^{3 , 4}		Q1		3	6	
Q_{gd}			Q2		3	6	
Ŧ			Q1		3.8	7	
T _{d(on)}	Turn-On Delay Time ^{3,4}				3.8	7	
Tr	Rise Time ^{3 , 4}		Q1		10	19	
		V_{DD} =15V , V_{GS} =10V , R_{G} =6 Ω	Q2		10	19	
Ŧ	Turn-Off Delay Time ^{3 , 4}	I _D =1A	Q1		22	43	ns
$T_{d(off)}$			Q2		22	43	
–			Q1		6.6	14	
T _f	Fall Time ^{3 , 4}		Q2		6.6	14	1

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
0	Input Capacitance		Q1		625	900	
Ciss			Q2		625	900	
0			Q1		84	125	pF
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , F=1MHz	Q2		84	125	
0			Q1		62	90	
C _{rss}	Reverse Transfer Capacitance		Q2		62	90	
Р	Gate resistance	V _{GS} =0V, V _{DS} =0V, F=1MHz	Q1		2.8	5.6	Ω
Rg			Q2		2.8	5.6	Ω
Drain-So	urce Diode Characteristics	5					
		$-V_G=V_D=0V$, Force Current	Q1			26	А
ls	Continuous Source Current		Q2			26	А
	Pulsed Source Current ³		Q1			42	А
lsм			Q2			42	А
	Diada Famurad Malla and	V _{GS} =0V , I _S =1A , T _J =25°C	Q1			1	V
V _{SD}	Diode Forward Voltage ³		Q2			1	V

Note :

Repetitive Rating : Pulsed width limited by maximum junction temperature. 1.

 $\label{eq:VDD} V_{DD} = 25 V, V_{GS} = 10 V, L = 0.1 mH, Q1: I_{AS} = 16A, Q2: I_{AS} = 42A, R_G = 25\Omega, Starting T_J = 25^\circ C.$ The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$. 2.

3.

4. Essentially independent of operating temperature.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

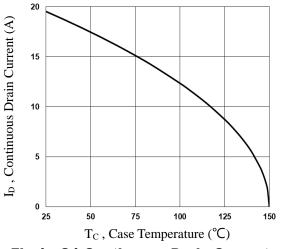
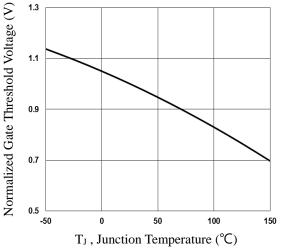



Fig.1 Q1 Continuous Drain Current vs. Tc

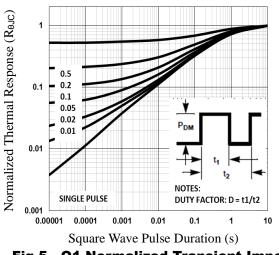


Fig.5 Q1 Normalized Transient Impedance

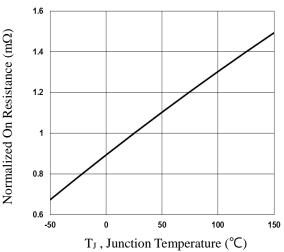


Fig.2 Q1 Normalized RDSON vs. T_J

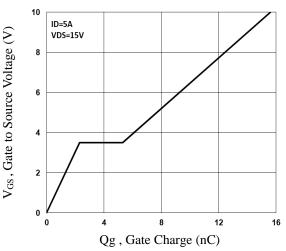
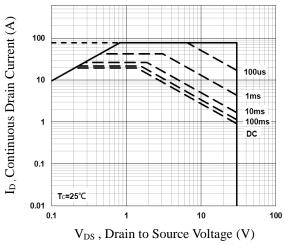
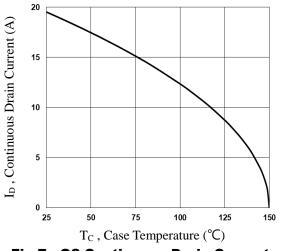
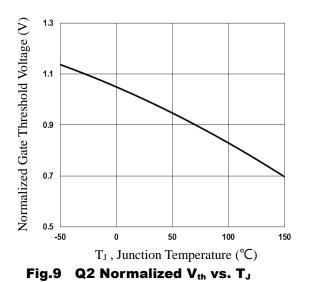
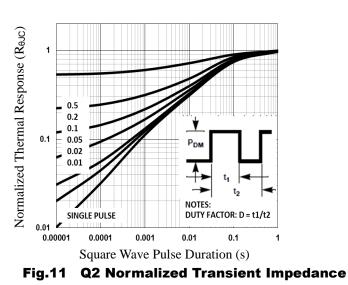
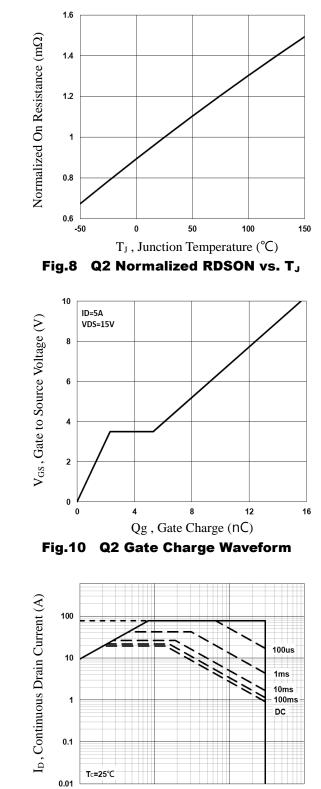


Fig.4 Q1 Gate Charge Waveform


Fig.6 Q1 Maximum Safe Operation Area

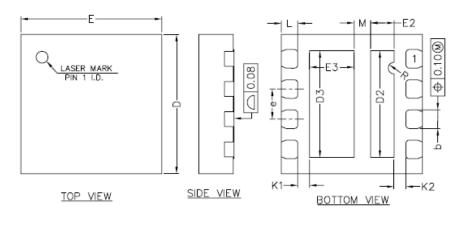



TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

V_{DS}, Drain to Source Voltage (V) Fig.12 Q2 Maximum Safe Operation Area

1

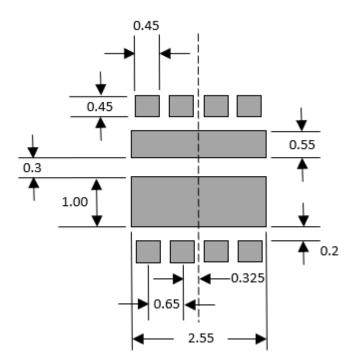
10


0.1


100

www.din-tek.jp

DFN3x3 Asymmetric Dual Package Information



Symbol	Dimensions In Millimeters			
	Min	Тур	Max	
Α	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A3		0.20REF		
b	0.35	0.40	0.45	
D	2.90	3.00	3.10	
E	2.90	3.00	3.10	
D2	2.20	2.30	2.40	
E2	0.40	0.50	0.60	
D3	2.20	2.30	2.40	
E3	0.85	0.95	1.05	
e	0.55	0.65	0.75	
К1	0.15	0.25	0.35	
К2	0.15	0.25	0.35	
L	0.30	0.35	0.40	
М	0.25	0.35	0.45	
R	0.125REF			

RECOMMEND FOOTPRINT Information

Disclaimer

www.din-tek.jp

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.