

DTP30N65FSJ

www.din-tek.jp

N-Channel 650-V (D-S) Super Junction MOSFET

PRODUCT SUMMARY			
V _{DS} (V) at T _J max.	650		
R _{DS(on)} max. (Ω) at 25 °C	$V_{GS} = 10 V$	0.15	
Q _g max. (nC)	112		
Q _{gs} (nC)	16		
Q _{gd} (nC)	35		
Configuration	Single		

FEATURES

- Reduced t_{rr}, Q_{rr}, and I_{RRM}
- Low figure-of-merit (FOM) Ron x Qg
- Low input capacitance (Ciss)
- Low switching losses due to reduced Q_{rr}
- Ultra low gate charge (Q_a)
- Avalanche energy rated (UIS)

APPLICATIONS

- Telecommunications
 - Server and telecom power supplies
- Lighting
 - High-intensity discharge (HID)
- Fluorescent ballast lighting • Consumer and computing
- ATX power supplies
- Industrial
 - Welding
- Battery chargers Renewable energy
 - Solar (PV inverters)
- Switch mode power supplies (SMPS)

ABSOLUTE MAXIMUM RATINGS (T C	= 25 °C, unless otherwis	se noted)			
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	650	V	
Gate-Source Voltage		V _{GS}	± 30	V	
Continuous Drain Current (T _{.1} = 150 °C)	$V_{GS} \text{ at 10 V} \frac{T_C = 25 \text{ °C}}{T_C = 100 \text{ °C}}$	I _D	30	А	
Continuous Drain Current (1j = 150°C)	$T_{\rm C} = 100 ^{\circ}{\rm C}$		19		
Pulsed Drain Current ^a		I _{DM}	82		
Single Pulse Avalanche Energy ^b		E _{AS}	435	mJ	
Maximum Power Dissipation		PD	237	W	
Operating Junction and Storage Temperature Range	e	T _J , T _{stg}	-55 to +150	°C	
Drain-Source Voltage Slope	T _J = 125 °C	dV/dt 37		V/ns	
Reverse Diode dV/dt d		uv/ut	31		
Soldering Recommendations (Peak Temperature) ^c	for 10 s		300	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature. b. V_{DD} = 50 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 5.1 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D$, dl/dt = 100 A/µs, starting T_J = 25 °C.

DTP30N65FSJ

www.din-tek.jp

THERMAL RESISTANCE RAT	INGS			
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	R _{thJA}	-	62	°C/W
Maximum Junction-to-Case (Drain)	R _{thJC}	-	0.5	C/ W

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							<u> </u>
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 250 μΑ	650	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.67	-	V/°C
Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	2	-	4	V
	I _{GSS}	$V_{GS} = \pm 20 V$		-	-	± 1	μA
Gate-Source Leakage			V _{GS} = ± 30 V	-	-	± 10	μA
Zaura Oata Maltana Duain Oriumant		V _{DS} =	= 650 V, V _{GS} = 0 V	-	-	1	
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 520 \	/, V _{GS} = 0 V, T _J = 125 °C	-	-	500	μA
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I _D = 11 A	-	0.15	0.18	Ω
Forward Transconductance	9 _{fs}	V _{DS}	= 30 V, I _D = 11 A	-	7.0	-	S
Dynamic					•	•	
Input Capacitance	C _{iss}		V _{GS} = 0 V,	-	4520	-	
Output Capacitance	C _{oss}		$V_{DS} = 100 V,$	-	105	-	
Reverse Transfer Capacitance	C _{rss}		f = 1 MHz		40	-	pF
Effective Output Capacitance, Energy Related ^a	C _{o(er)}	- V _{DS} = 0 V to 520 V, V _{GS} = 0 V		-	84	-	
Effective Output Capacitance, Time Related ^b	C _{o(tr)}			-	293	-	
Total Gate Charge	Qg			-	75	136	
Gate-Source Charge	Q _{gs}	$V_{GS} = 10 V$	I _D = 11 A, V _{DS} = 520 V	-	16	-	nC
Gate-Drain Charge	Q _{gd}			-	35	-	
Turn-On Delay Time	t _{d(on)}			-	23	46	
Rise Time	t _r	V_{DD} = 520 V, I_{D} = 11 A, V_{GS} = 10 V, R_{g} = 9.1 Ω		-	35	68	- ns
Turn-Off Delay Time	t _{d(off)}			-	69	105	
Fall Time	t _f			-	43	81	
Gate Input Resistance	Rg	f = 1 MHz, open drain		-	0.78	-	Ω
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol	-	-	30	
Pulsed Diode Forward Current	I _{SM}	integral reverse		-	-	82	A
Diode Forward Voltage	V _{SD}	T _J = 25 °C, I _S = 11 A, V _{GS} = 0 V		-	0.9	1.2	V
Reverse Recovery Time	t _{rr}	-		-	166	-	ns
Reverse Recovery Charge	Q _{rr}		5 °C, I _F = I _S = 11 A, 100 A/µs, V _B = 25 V	-	1.2	-	μC
Reverse Recovery Current	I _{RRM}		$100 \text{ Av}\mu\text{s}, \text{ v}_{\text{R}} = 25 \text{ v}$	-	14	-	A

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} . b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

www.din-tek.jp

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

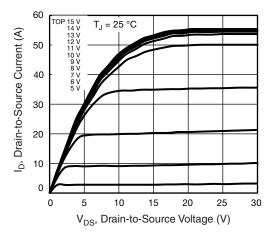


Fig. 1 - Typical Output Characteristics

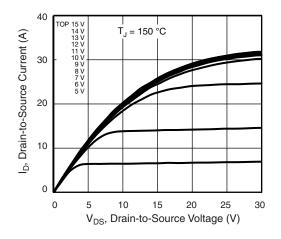


Fig. 2 - Typical Output Characteristics

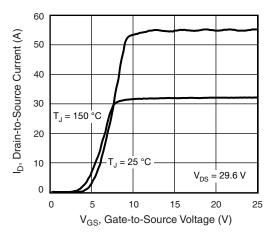


Fig. 3 - Typical Transfer Characteristics

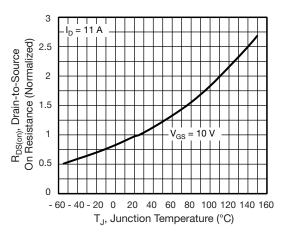


Fig. 4 - Normalized On-Resistance vs. Temperature

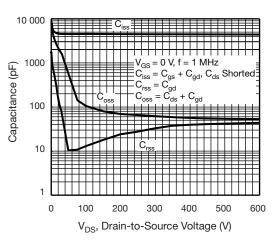


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

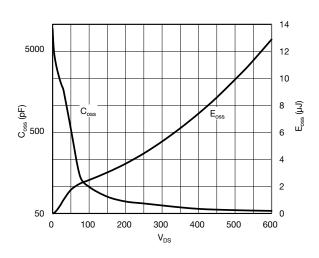


Fig. 6 - C_{oss} and E_{oss} vs. V_{DS}

DTP30N65FSJ

www.din-tek.jp

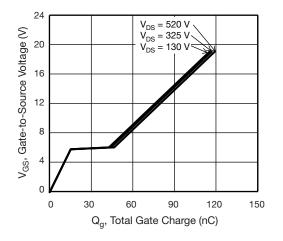


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

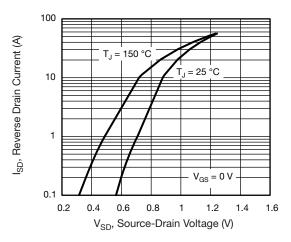


Fig. 8 - Typical Source-Drain Diode Forward Voltage

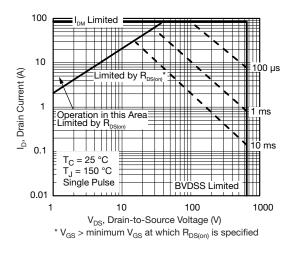


Fig. 9 - Maximum Safe Operating Area

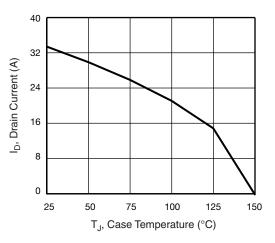


Fig. 10 - Maximum Drain Current vs. Case Temperature

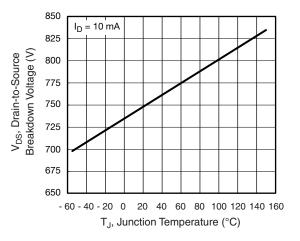


Fig. 11 - Temperature vs. Drain-to-Source Voltage

www.din-tek.jp

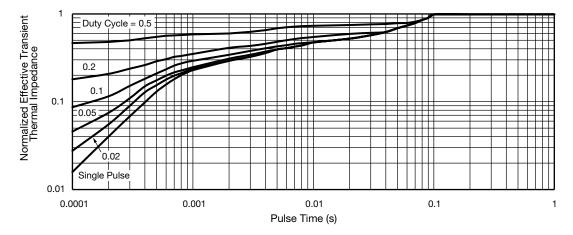


Fig. 12 - Normalized Thermal Transient Impedance, Junction-to-Case

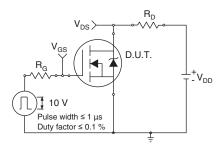


Fig. 13 - Switching Time Test Circuit

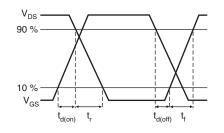


Fig. 14 - Switching Time Waveforms

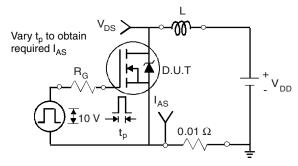


Fig. 15 - Unclamped Inductive Test Circuit

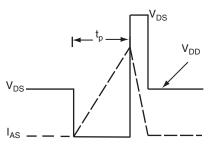


Fig. 16 - Unclamped Inductive Waveforms

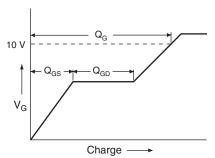
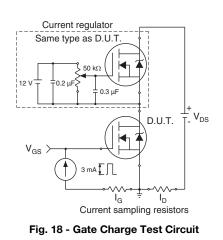
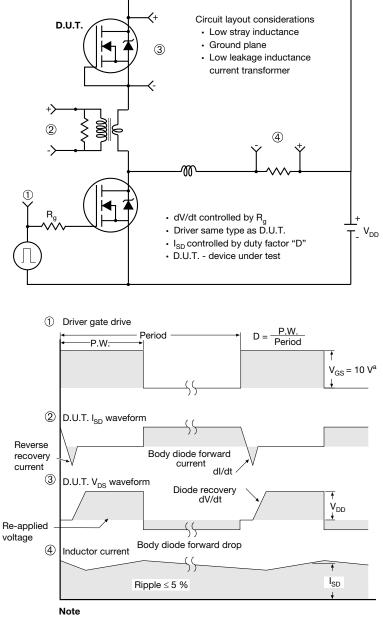
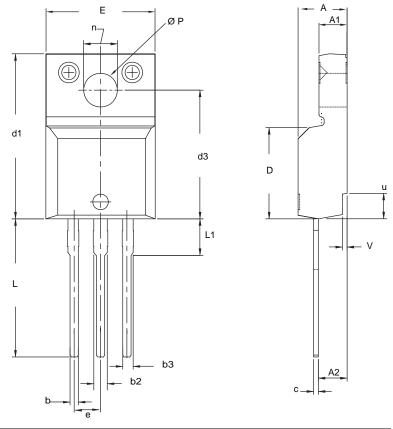




Fig. 17 - Basic Gate Charge Waveform

Peak Diode Recovery dV/dt Test Circuit



a. $V_{GS} = 5$ V for logic level devices

Fig. 19 - For N-Channel

TO-220 FULLPAK (HIGH VOLTAGE)

	MILLIN	METERS
DIM.	MIN.	MAX.
А	4.270	4.830
A1	2.450	2.830
A2	2.510	2.850
b	0.622	0.890
b2	1.229	1.450
b3	1.229	1.400
С	0.440	0.629
D	8.650	9.800
d1	15.68	16.220
d3	12.300	12.920
E	9.360	10.630
е	2.54	BSC
L	12.200	13.730
L1	3.100	3.500
n	6.050	6.150
ØP	3.050	3.450
u	2.400	2.500
V	0.400	0.500

Notes

1. To be used only for process drawing. 2. These dimensions apply to all TO-220, FULLPAK leadframe versions 3 leads. 3. All critical dimensions should C meet $C_{pk} > 1.33$. 4. All dimensions include burrs and plating thickness. 5. No chipping or package damage.

Disclaimer

www.din-tek.jp

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.