

N-Channel 25 V (D-S) MOSFET

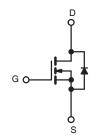
PRODUCT SUMMARY							
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^{a, e}	Q _g (Typ.)				
25	0.0013 at V _{GS} = 10 V	80	70 nC				
	0.0018 at $V_{GS} = 4.5 \text{ V}$	65					

FEATURES


- DT-Trench Power MOSFET
- 100 % R_g and UIS Tested

APPLICATIONS

- · Notebook PC Core
- VRM/POL


DFN 3.3x3.3

Bottom View

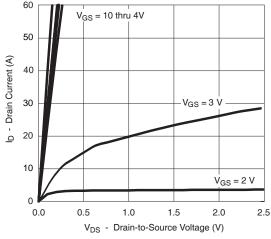
N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)						
Parameter	Symbol	Limit	Unit			
Drain-Source Voltage	V _{DS}	25	V			
Gate-Source Voltage	V _{GS}	± 12				
	T _C = 25 °C		80 ^{a, e}			
Continuous Drain Current (T, = 175 °C)	T _C = 70 °C		65 ^e			
Continuous Diam Current (1) = 175 C)	T _A = 25 °C	l _D	41 ^{b, c}	A		
	T _A = 70 °C		33 ^{b, c}			
Pulsed Drain Current	I _{DM}	320				
Avalanche Current Pulse	ent Pulse L = 0.1 mH				72	
Single Pulse Avalanche Energy		E _{AS}	105	mJ		
Continuous Source-Drain Diode Current	T _C = 25 °C	l _S	80 ^{a, e}	А		
Continuous Source-Diam Diode Current	T _A = 25 °C	'S	7.5 ^{b, c}] ^		
	T _C = 25 °C		55			
Maximum Power Dissipation	T _C = 70 °C	P _D	40	W		
	T _A = 25 °C	'B	5.8 ^{b, c}	, vv		
	T _A = 70 °C		4.1 ^{b, c}	1		
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 175	°C			

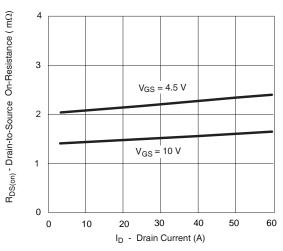
THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	22	35	°C/W		
Maximum Junction-to-Case	Steady State	R _{thJC}	2.4	4	7 0/ **		

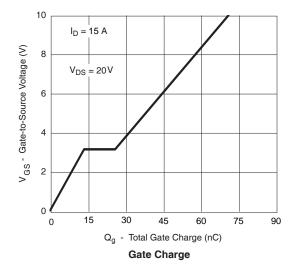
- Notes:
 a. Based on T_C = 25 °C.
 b. Surface mounted on 1" x 1" FR4 board.
 c. t = 10 s.
 d. Maximum under steady state conditions is 90 °C/W.
- e. Calculated based on maximum junction temperature. Package limitation current is 80 A.

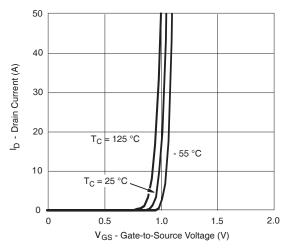
Static Drain-Source Breakdown Voltage VDS VGS = 0 V, ID = 250 μA 25 V VDS Temperature Coefficient ΔVGS(H) TD ID = 250 μA 25 M	SPECIFICATIONS ($T_J = 25 ^{\circ}C$, Parameter	Symbol	Test Conditions	Min .	Тур.	Max.	Unit	
V _{DS} Temperature Coefficient Δ/V _{DS/TJ} V _{SS(B)} , Temperature Coefficient Δ/V _{DS(B)} /T _J Sales-Source Threshold Voltage 4/V _{SS(B)} /V _{SS(B)} 1 _{DS} = 250 μA 35 m/V/Y _{DS} = 150 μA Gate-Source Threshold Voltage V _{SS(B)} /V _{SS} V _{DS} = V _{DS} , I _D = 250 μA 0.5 2.5 V Zero Gate Voltage Drain Current I _{DSS} V _{DS} = V _D , V _{DS} = 20 V, V _{DS} = 0 V 1 μA On-State Drain Current ⁸ I _{D(D)} V _{DS} = 20 V, V _{DS} = 0 V 80 A Drain-Source On-State Resistance ⁸ P _{DS} (On) V _{DS} = 10 V, I _D = 15 A 0.0013 0.0021 Drain-Source On-State Resistance ⁸ P _{DS} (On) V _{DS} = 20 V, V _{DS} = 0 V, I _D = 15 A 0.0013 0.0021 Porward Transconductance ⁸ 9 _{fs} V _{DS} = 20 V, I _D = 15 A 140 S Dynamic ^b V _{DS} = 20 V, V _{DS} = 10 V, I _D = 15 A 140 S Oypacitance C _{DSS} V _{DS} = 20 V, V _{DS} = 10 V, I _D = 15 A 70 10 Gate-Source Charge Q _{Dg} V _{DS} = 20 V, V _{DS} = 10 V, I _D = 15 A 70 10 10 10 10 10 10 10	Static	7			-76-	1114111		
Vag(m) Temperature Coefficient λVos(m)/Ty Ip = 250 μA - 5.5 mV/°C Gate-Source Threshold Voltage Vgs(m) Vgs(m) Vgs = 250 μA 0.5 2.5 V Gate-Source Leakage Igss Vgs = 0 V, Vgs = 20 V ± 100 nA Zero Gate Voltage Drain Current Igss Vgs = 20 V, Vgs = 0 V ± 100 nA On-State Drain Current ^a Igo(m) Vgs = 20 V, Vgs = 0 V ± 100 nA On-State Drain Current ^a Igo(m) Vgs = 20 V, Vgs = 10 V 80 A Orain-Source On-State Resistance ^a Pgs Vgs = 10 V, Ip = 15 A 0.0013 0.0021 Forward Transconductance ^a 9gs Vgs = 20 V, Ip = 15 A 0.0018 0.0028 Forward Transconductance ^a 9gs Vgs = 20 V, Vgs = 10 V, Ip = 15 A 140 s Dynamic ^b Vgs = 20 V, Vgs = 10 V, Ip = 15 A 140 s s Dynamic ^b Vgs = 20 V, Vgs = 10 V, Ip = 15 A 70 ygs ygs ygs 3800 ygs ygs ygs ygs ygs ygs	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	25			V	
Vosythy Temperature Coefficient Δ/GS(H)/I (SIGN) VDS = VGS, ID = 250 μA 0.5 2.5 VDS Gate-Source Threshold Voltage VGS(H) VDS = 0 V, VGS = 20 V ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 20 V, VGS = 0 V 1 μA On-State Drain Current ^a ID(m) VDS = 20 V, VGS = 10 V 80 A On-State Drain Current ^a ID(m) VDS = 50 V, VGS = 10 V 80 A Drain-Source On-State Resistance ^a RDS(m) VGS = 10 V, ID = 15 A 0.0018 0.0028 Forward Transconductance ^a GB IS VDS = 20 V, ID = 15 A 0.0018 0.0028 Portain-Source Constate Resistance ^a GB IS VDS = 20 V, ID = 15 A 0.0018 0.0028 Portain-Source Constance CG IS VDS = 20 V, VGS = 0 V, ID = 15 A 140 S Pypramicb VDS = 20 V, VGS = 10 V, ID = 15 A 70 0 0 Output Capacitance CG IS VDS = 20 V, VGS = 10 V, ID = 15 A 70 0 0 0 0 0 0 0 0 <	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	1 050 4		35		14/00	
Gate-Source Leakage IGSS VDS = 0 V, VGS = ± 20 V ± 100 nA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 10 V, ID = 15 A 0.0013 0.0021 0.	V _{GS(th)} Temperature Coefficient				- 5.5		mV/°C	
Gate-Source Leakage IGSS VDS = 0 V, VGS = ± 20 V ± 100 nA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 20 V, VGS = 0 V 1 1 μA VDS = 10 V, ID = 15 A 0.0013 0.0021 0.	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	0.5		2.5	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Leakage	1 .	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Con-State Drain Current® ID(on) V _{DS} = 20 V, V _{QS} = 10 V 80 A	7 0 1 1/1 10 1 0 1	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current		V _{DS} = 20 V, V _{GS} = 0 V, T _J = 55 °C			10	T μA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	80			Α	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ь	V _{GS} = 10 V, I _D = 15 A		0.0013	0.0021		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	HDS(on)			0.0018	0.0028		
Input Capacitance	Forward Transconductance ^a	9 _{fs}	V _{DS} = 20 V, I _D = 15 A		140		S	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic ^b		-					
Reverse Transfer Capacitance C _{rss} 90	Input Capacitance	C _{iss}			3800			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		880		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}			90			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T-4-1 O-4- Ob		V _{DS} = 20 V, V _{GS} = 10 V, I _D = 15 A		70		nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lotal Gate Charge	Q _g			30			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{gs}	$V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$		16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q_{gd}			3.8			
Rise Time t_r $V_{DD} = 20 \text{ V}, R_L = 0.555 \Omega$ 6 Turn-Off Delay Time $t_d(off)$ $I_D \cong 15 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$ 38 Fall Time t_f 4.5 38 Turn-On Delay Time $t_d(on)$ 25 10 Rise Time t_r $V_{DD} = 20 \text{ V}, R_L = 0.625 \Omega$ 10 10 Turn-Off Delay Time $t_d(off)$ $t_d(off)$ 45 7.2 Fall Time t_f t_f 7.2 45 7.2 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current t_g t_g t_g 80 A Pulse Diode Forward Current ^a t_g t_g t_g 320 A Body Diode Reverse Recovery Time t_{rr} t_g 20 ns Body Diode Reverse Recovery Fall Time t_g	Gate Resistance	Rg	f = 1 MHz		1.0	2.1	Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			12			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	$V_{DD} = 20 \text{ V}, R_L = 0.555 \Omega$		6		1	
Turn-On Delay Time $ \begin{matrix} t_{d(on)} \\ Rise Time \end{matrix} \qquad \begin{matrix} t_r \\ V_{DD} = 20 \text{ V}, R_L = 0.625 \ \Omega \\ I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} 10 \\ 45 \\ 7.2 \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} \qquad \begin{matrix} I_D \cong 10 \text{ A}, V_{GEN} = 1 \ \Omega \end{matrix} $	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 15 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$		38			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f			4.5			
Turn-Off Delay Time $t_{d(off)} = t_{d(off)} = t_{d(off)$	Turn-On Delay Time	t _{d(on)}			25		ns	
Fall Time t_f 7.2 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}\text{C}$ 80 Pulse Diode Forward Current ^a I_{SM} 320 Body Diode Voltage V_{SD} $I_S = 12 ^{\circ}\text{A}$ 0.8 1.2 V_S Body Diode Reverse Recovery Time V_{rr} 20 ns Body Diode Reverse Recovery Charge V_{rr} Reverse Recovery Fall Time V_{rr} 20 nc Reverse Recovery Fall Time V_{rr} 20 nc	Rise Time	t _r	$V_{DD} = 20 \text{ V}, R_{L} = 0.625 \Omega$		10			
Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $T_C = 25$ °C 80 A Pulse Diode Forward Current ^a I_{SM} 320 320 Body Diode Voltage V_{SD} $I_S = 12$ A 0.8 1.2 V Body Diode Reverse Recovery Time t_{rr} 20 ns Body Diode Reverse Recovery Charge Q_{rr} $I_F = 10$ A, di/dt = 100 A/μs, $T_J = 25$ °C 20 nC Reverse Recovery Fall Time t_a	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		45			
	Fall Time	t _f			7.2			
Pulse Diode Forward Current ^a I_{SM} 320 Body Diode Voltage V_{SD} $I_{S} = 12 \text{ A}$ 0.8 1.2 V_{SD} 8 1.2 V_{SD} Body Diode Reverse Recovery Time V_{rr} 20 ns 8 1.2 V_{rr} 8 Body Diode Reverse Recovery Charge V_{rr} V_{rr} 8 Reverse Recovery Fall Time V_{rr}	Drain-Source Body Diode Characteristics	S			•			
Pulse Diode Forward Current ^a I_{SM} 320 Body Diode Voltage V_{SD} $I_S = 12 \text{ A}$ 0.8 1.2 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/µs}, T_J = 25 °C$ $I_F = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/µs}, T_J = 25 °C$	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			80	۸	
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 10 \text{ A, di/dt} = 100 \text{ A/µs, T}_J = 25 \text{ °C}$ 59 ns	Pulse Diode Forward Current ^a	I _{SM}				320	^	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/µs}, T_J = 25 °C$ 0 nC	Body Diode Voltage	V _{SD}	I _S = 12 A		0.8	1.2	V	
Reverse Recovery Fall Time t _a I _F = 10 A, di/dt = 100 A/μs, I _J = 25 °C 59 ns	Body Diode Reverse Recovery Time	t _{rr}			20		ns	
Reverse Recovery Fall Time t _a 59 ns	Body Diode Reverse Recovery Charge	Q _{rr}	L = 10 A di/dt = 100 A/vo T = 05 °C		20		nC	
					59		1	
	Reverse Recovery Rise Time	t _b			15		ns	


Notes:

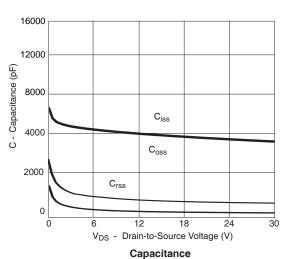
- a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

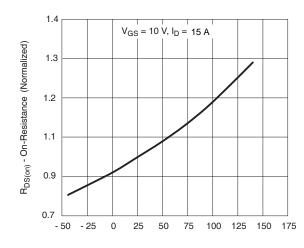

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

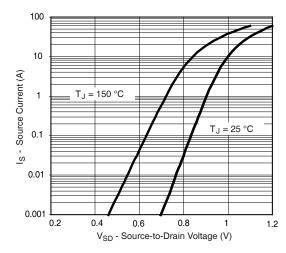


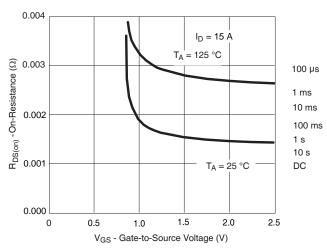
Output Characteristics

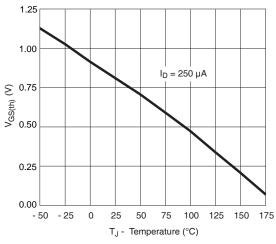


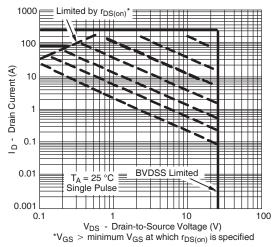

R_{DS(on)} vs. Drain Current

Transfer Characteristics

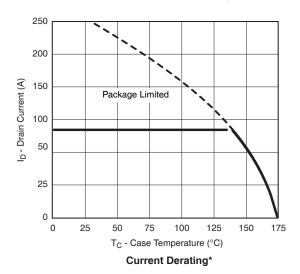


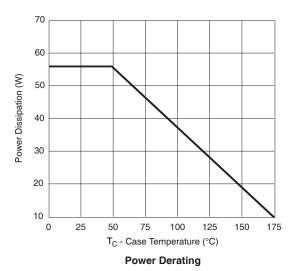

On-Resistance vs. Junction Temperature

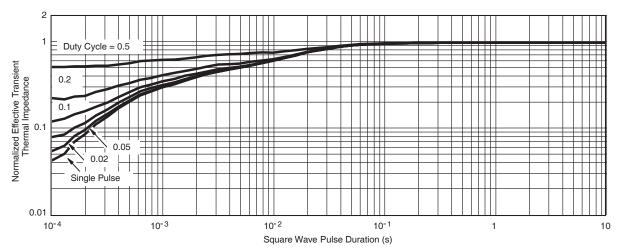

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Forward Diode Voltage vs. Temperature

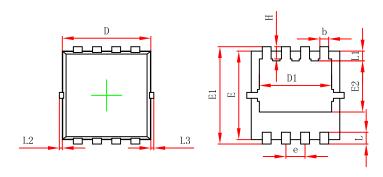
 $R_{DS(on)}$ vs. V_{GS} vs. Temperature



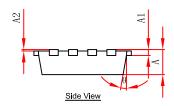

Threshold Voltage


Safe Operating Area, Junction-to-Ambient

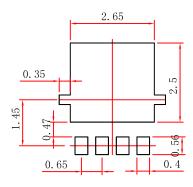
TYPICAL CHARACTERISTICS (25 °C, unless C+harmina natad)


* The power dissipation P_D is based on $T_{J(max)} = 175$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Case



DFN3.3x3.3-8L Package Outline Dimensions



Bottom View

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min.	Max.	Min.	Max.		
Α	0.650	0.850	0.026	0.033		
A1	0.152	REF.	0.006	06 REF.		
A2	0~0.05		0~0	0~0.002		
D	2.900	3.100	0.114	0.122		
D1	2.300	2.600	0.091	0.102		
E	2.900	3.100	0.114	0.122		
E1	3.150	3.450	0.124	0.136		
E2	1.535	1.935	0.060	0.076		
b	0.200	0.400	0.008	0.016		
е	0.550	0.750	0.022	0.030		
L	0.300	0.500	0.012	0.020		
L1	0.180	0.480	0.007	0.019		
L2	0~0.100		0~0	.004		
L3	0~0.100		0~0	-0.004		
Н	0.315	0.515	0.012	0.020		
θ	9°	13°	9°	13°		

DFN3.3x3.3-8L Suggested Pad Layout

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Din-Tek Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Din-Tek"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Din-Tek makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Din-Tek disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Din-Tek's knowledge of typical requirements that are often placed on Din-Tek products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Din-Tek's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Din-Tek products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Din-Tek product could result in personal injury or death. Customers using or selling Din-Tek products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Din-Tek personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Din-Tek. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Din-Tek documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Din-Tek Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Din-Tek documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.