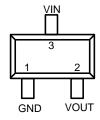
600mA Low Dropout Linear Regulator

Description

The FP6131 series are low dropout, positive linear regulators with very low quiescent current. The FP6131 can supply 600mA output current with a low dropout voltage at about 600mV.


The FP6131 regulator is able to operate with output capacitors as small as $1\mu F$ for stability. The FP6131 also offers on chip thermal shutdown feature to provide protection against overload or any condition when the ambient temperature exceeds the junction temperature.

The FP6131 series are available in fixed output voltage ranging from 1.2V to 4.5V with 0.1V interval.

The FP6131 series are available in low-profile, space-saving 3-lead SOT-23 and SOT-89 packages.

Pin Assignments

GS3 Package (SOT-23)

GB3 Package (SOT-89)

VB3 Package (SOT-89)

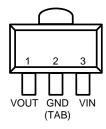
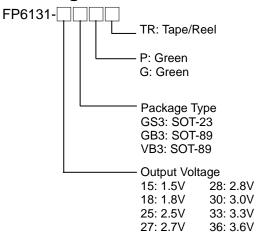


Figure 1. Pin Assignment of FP6131


Features

- Low Dropout Voltage of 600mV at 600mA
- Guaranteed 600mA Output Current
- Very Low Quiescent Current at about 30µA
- ±2% Output Voltage Accuracy for 1.2~4.5V
- Needs Only 1µF Capacitor for Stability
- Thermal Shutdown Protection
- Current Limit Protection
- Low-ESR Ceramic Capacitor for Output Stability.
- Tiny SOT-23 and SOT-89 packages
- RoHS Compliant

Applications

- DVD/CD-ROM, CD/RW
- Wireless Device
- LCD Module
- Battery Power System
- Card Reader
- XDSL Router

Ordering Information

Note 1: Please consult Fitipower sales office or authorized distributors for availability of special output voltages.

SOT-23-3 Marking

•			
Part Number	Product Code	Part Number	Product Code
FP6131-15GS3G	N1=	FP6131-28GS3G	Be=
FP6131-18GS3P	Ва	FP6131-30GS3P	Bf
FP6131-18GS3G	Ba=	FP6131-30GS3G	Bf=
FP6131-25GS3P	Bb	FP6131-33GS3P	Bh
FP6131-25GS3G	Bb=	FP6131-33GS3G	Bh =
FP6131-27GS3P	Bd	FP6131-36GS3P	Bi
FP6131-27GS3G	Bd=	FP6131-36GS3G	Bi=
FP6131-28GS3P	Be		

Typical Application Circuit

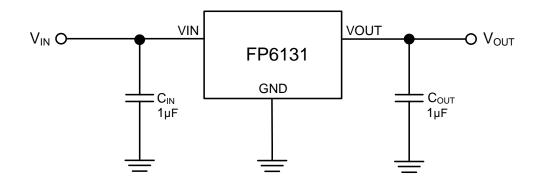


Figure 2. Typical Application Circuit of FP6131

Note 2 : To prevent oscillation, it is recommended to use minimum 1µF X7R or X5R dielectric capacitors if ceramics are used as input/output capacitors.

Functional Pin Description

Pin Name	Pin Function
VIN	Power is supplied to this device from this pin which requires an input filter capacitor. In general, the input capacitor in the range of 1μ F to 10μ F is sufficient.
VOUT	The output supplies power to loads. The output capacitor is required to prevent output voltage unstable. The FP6131 is stable with an output capacitor which is 1µF or greater. The larger output capacitor will be required for application with large transit load to limit peak voltage transits. Besides, it could reduce output noise, improve stability and PSRR.
GND	Common ground pin

FP6131-1.8-FEB-2012 **2**

Block Diagram

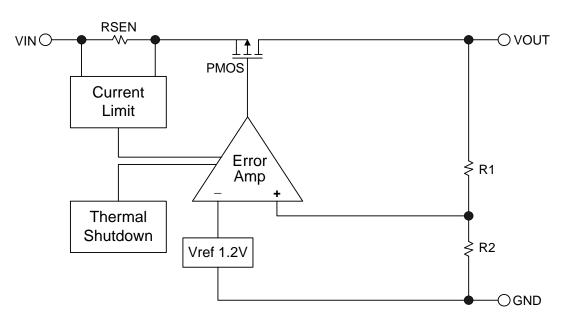


Figure 3. Block Diagram of FP6131

Absolute Maximum Ratings

Supply Input Voltage (V _{IN})	+6V
 Power Dissipation @25°C, (P_D) 	
SOT-23	+0.4W
SOT-89	+0.57W
 Package Thermal Resistance, (θ_{JA}) 	
SOT-23	+250°C/W
SOT-89	+175°C/W
Maximum Junction Temperature (T _J)	+150°C
Storage Temperature Range (T _S)	-65°C to +150°C
• Lead Temperature (Soldering, 10 sec.) (T _{LEAD}) Note 3: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage	

Recommended Operating Conditions

- Input Voltage (V_{IN}) ------+2.8V to +5.5V

Electrical Characteristics

 $(V_{IN}=V_{OUT}+1V \text{ or } V_{IN}=2.8V \text{ whichever is greater, } C_{IN}=1\mu\text{F, } C_{OUT}=1\mu\text{F, } T_A=25^{\circ}\text{C, unless otherwise specified)}$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Voltage Accuracy	ΔV_{OUT}	I _O = 1mA		-2		+2	%
Current Limit	I _{LIMIT}	R _{Load} =1Ω		600			mA
Quiescent Current	ΙQ	I _O = 0mA			30	50	μA
Dropout Voltage (Note 4) V			V _{OUT} =1.5V		1550	1690	mV
	V _{DROP}	I _O =600mA	V _{OUT} =1.8V		1300	1420	
			V _{OUT} =2.5V		800	900	
			V _{OUT} =3.0V		650	730	
			V _{OUT} =3.3V		600	670	
Line Regulation	ΔV_{LINE}	I _O =1mA, V _{IN} =V _{OUT} +1V to 5V			1	5	mV
Load Regulation (Note 5)	ΔV_{LOAD}	I _O =0mA to 600mA			13	50	mV
Ripple Rejection (Note 6)	PSRR	$V_{IN}=V_{OUT}+1V$ $f_{RIPPLE}=120Hz, C_{OUT}=1\mu F$			60		dB
Temperature Coefficient (Note 6)	T.C.	$I_{OUT} = 1$ mA, $V_{IN} = 5$ V			50		ppm/ºC
Thermal Shutdown Temperature	T _{SD}				160		°C
(Note 6)	ΔT_{SD}	Hysteresis			25		°C

Note 4 : The dropout voltage is defined as V_{IN}-V_{OUT}, which is measured when V_{OUT} drops 2% of its normal value with the specified output current.

Note 5 : Load regulation and dropout voltage are measured at a constant junction temperature by using a 40ms low duty cycle current pulse.

Note 6: Guarantee by design.

Typical Performance Curves

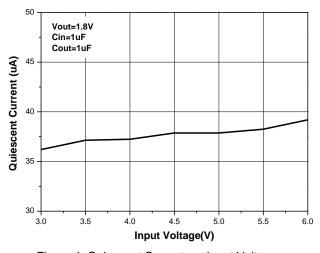


Figure 4. Quiescent Current vs. Input Voltage

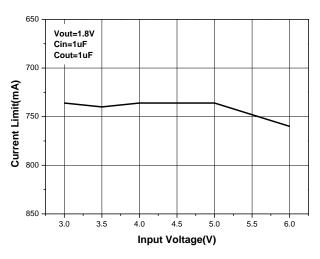


Figure 6. Current limit vs. Input Voltage

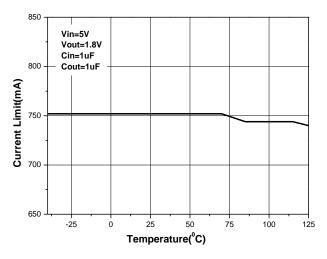


Figure 8. Current limit vs. Temperature

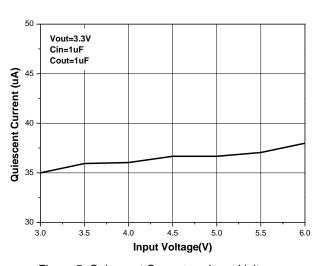


Figure 5. Quiescent Current vs. Input Voltage

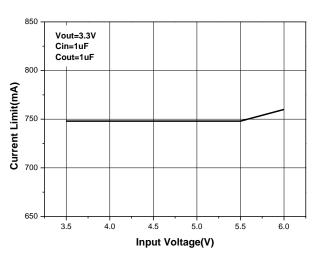


Figure 7. Current Limit vs. Input Voltage

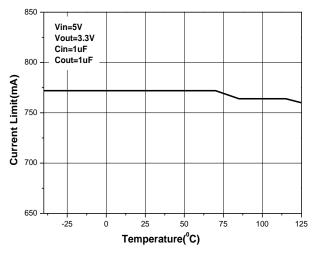


Figure 9. Current limit vs. Temperature

FP6131-1.8-FEB-2012 **5**

Typical Performance Curves (Continued)

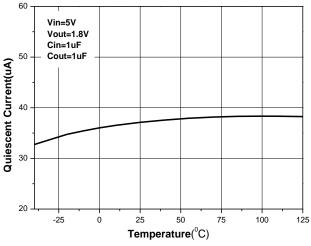


Figure 10. Quiescent Current vs. Temperature

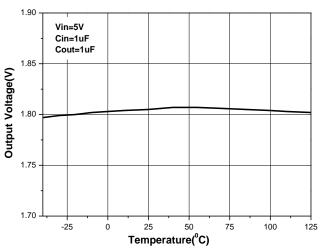


Figure 12. Temperature Stability

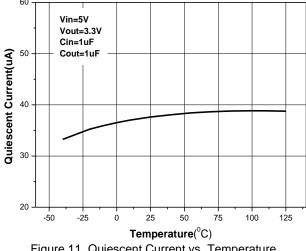


Figure 11. Quiescent Current vs. Temperature

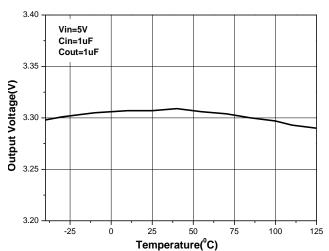


Figure 13. Temperature Stability

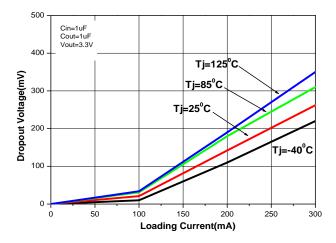


Figure 14. Dropout Voltage vs. Loading Current

Typical Performance Curves (Continued)

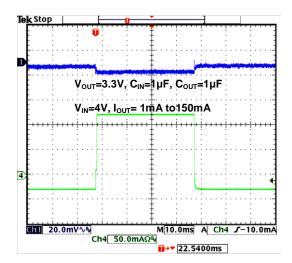


Figure 15. Load Transition Response

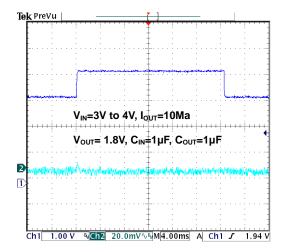


Figure 17. Line Transition Response

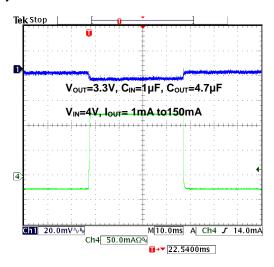


Figure 16. Load Transition Response

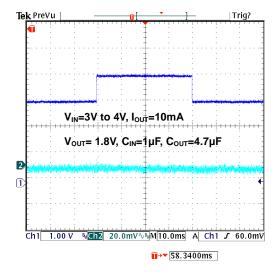


Figure 18. Line Transition Response

Application Information

The FP6131 series are low dropout linear regulators that could provide 300mA output current at dropout voltage about 300mV. Besides, current limit and on chip thermal shutdown features provide protection against overload or any condition when the ambient temperature exceeds the junction temperature.

Output and Input Capacitor

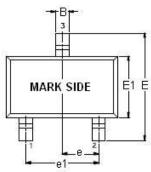
The FP6131 regulator is designed to be stable with wide range of output capacitors. The ESR of the output capacitor affects stability. Larger value of the output capacitor decreases the peak deviations and improves transition response for larger current changes.

The capacitor types (aluminum, ceramic, and tantalum) have different characterizations such as temperature and voltage coefficients. All ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across temperature applications. and dielectrics used are X5R, X7R and Y5V. It is recommended to use $1\mu F$ to $10\mu F$ X5R or X7R dielectric ceramic capacitors with $30m\Omega$ to $50m\Omega$ ESR range between device outputs to ground for transient stability. The FP6131 is designed to be stable with low ESR ceramic capacitors and higher values of capacitors, and ESR could improve output stability.

So the ESR of output capacitor is very important because it generates a zero to provide phase lead for loop stability.

There are no requirements for the ESR on the input capacitor, but its voltage and temperature coefficient have to be considered for device application environment.

Protection Feature

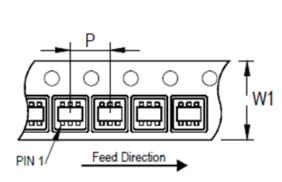

In order to prevent overloading or thermal condition from damaging the device, FP6131 regulator has internal thermal and current limit functions designed to protect the device. It will rapidly shut off PMOS pass element during over temperature condition.

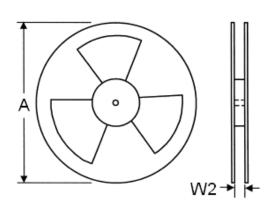
Thermal Consideration

The power handling capability of the device will be limited by allowable operation junction temperature (125°C). The power dissipated by the device will be estimated by $P_D = I_{OUT} \times (V_{IN} - V_{OUT})$. The power dissipation should be lower than the maximum power dissipation listed in "Absolute Maximum Ratings" section.

Outline Information

SOT-23-3 Package (Unit: mm)

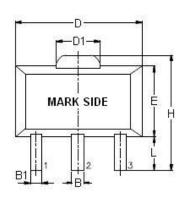


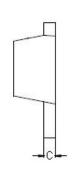


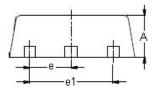
	—D—	_	
5 B	378.00		•
	1-27	17	A2

SYMBOLS	DIMENSION IN MILLIMETER				
UNIT	MIN	MAX			
Α	0.90	1.45			
A1	0.00	0.15			
A2	0.90	1.30			
В	0.30	0.50			
D	2.80	3.00			
E	2.60	3.00			
E1	1.50	1.70			
е	0.90	1.00			
e1	1.80	2.00			
Ĺ	0.30	0.60			

Carrier Dimensions

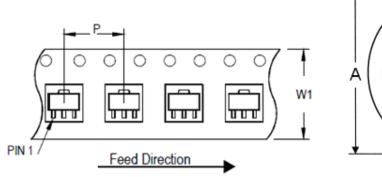


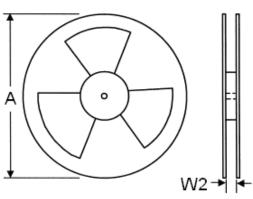



Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in	mm	(W2) mm	Length mm	
8	4	7	180	8.4	300~1000	3,000

Outline Information (Continued)

SOT-89-3 Package (Unit: mm)





SYMBOLS	DIMENSION IN MILLIMETER				
UNIT	MIN	MAX			
Α	1.40	1.60			
L	0.89	1.20			
В	0.44	0.56			
B1	0.36	0.48			
С	0.35	0.44			
D	4.40	4.60			
D1	1.35	1.83			
Н	3.94	4.25			
E	2.29	2.60			
е	1.45	1.55			
e1	2.90	3.10			

Note: Followed From JEDEC TO-243-C.

Carrier Dimensions

Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in	mm	(W2) mm	Length mm	
12	8	7	180	12.4	300~1000	1,000